cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376802 Expansion of 1/((1 - x)^3 - 9*x)^(1/3).

Original entry on oeis.org

1, 4, 31, 283, 2770, 28204, 294568, 3131650, 33732883, 367035814, 4025600941, 44439461275, 493218155119, 5498860571026, 61543476786067, 691095770653867, 7783168304357434, 87878978740300960, 994484816394177214, 11276915136560900662, 128106749179069022344
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Partial sums of A361895.
Cf. A004987.

Programs

  • Mathematica
    CoefficientList[Series[1/Surd[((1-x)^3-9x),3],{x,0,30}],x] (* Harvey P. Dale, Dec 11 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x)^3-9*x)^(1/3))

Formula

a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n+2*k,n-k).
a(n) = hypergeom([(1+n)/2, 1+n/2, -n], [2/3, 1], -4/3). - Stefano Spezia, May 04 2025

A376806 Expansion of 1/((1 - x^3)^3 - 9*x)^(1/3).

Original entry on oeis.org

1, 3, 18, 127, 957, 7497, 60229, 492483, 4079826, 34138873, 287946771, 2444458878, 20863127251, 178868929074, 1539439262406, 13293346718161, 115123998810525, 999553370761017, 8698196146639573, 75845560146124527, 662551474429229571, 5797239969198654748
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x^3)^3-9*x)^(1/3))

Formula

a(n) = Sum_{k=0..floor(n/3)} (-9)^(n-3*k) * binomial(-1/3,n-3*k) * binomial(3*n-8*k,k).

A383598 Expansion of 1/( (1-x^2)^2 * (1-x^2-9*x) )^(1/3).

Original entry on oeis.org

1, 3, 19, 132, 1000, 7884, 63802, 525666, 4388518, 37010220, 314633944, 2692239012, 23161121641, 200158043223, 1736461678195, 15114944308560, 131950690469920, 1154858014686960, 10130508263000440, 89045875688728440, 784127521246844872, 6916291864328172336
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x^2)^2 * (1-x^2-9*x) )^(1/3))); // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[(-9)^(n-2*k)* Binomial[-1/3, n-2*k]* Binomial[n-k,k],{k,0,Floor[n/2]}],{n,0,22}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, (-9)^(n-2*k)*binomial(-1/3, n-2*k)*binomial(n-k, k));
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (-9)^(n-2*k) * binomial(-1/3,n-2*k) * binomial(n-k,k).
a(n) ~ ((9 + sqrt(85))/2)^(n+1) / (Gamma(1/3) * 3^(4/3) * 85^(1/6) * n^(2/3)). - Vaclav Kotesovec, May 02 2025
Showing 1-3 of 3 results.