A377942 Triangle read by rows: T(n,k) = number of free polyominoes with n cells, where the maximum number of collinear cell centers on any line in the plane is k.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 0, 9, 2, 1, 0, 0, 18, 13, 3, 1, 0, 0, 37, 48, 19, 3, 1, 0, 0, 62, 200, 77, 25, 4, 1, 0, 0, 86, 678, 369, 114, 33, 4, 1, 0, 0, 78, 2177, 1590, 593, 170, 41, 5, 1, 0, 0, 61, 6280, 6739, 2774, 928, 234, 51, 5, 1, 0, 0, 34, 17187, 27153, 12851, 4597, 1387, 323, 61, 6, 1
Offset: 1
Examples
| k n | 1 2 3 4 5 6 7 8 9 10 ---------------------------------------------------------------------------- 1 | 1 2 | 0 1 3 | 0 1 1 4 | 0 2 2 1 5 | 0 0 9 2 1 6 | 0 0 18 13 3 1 7 | 0 0 37 48 19 3 1 8 | 0 0 62 200 77 25 4 1 9 | 0 0 86 678 369 114 33 4 1 10 | 0 0 78 2177 1590 593 170 41 5 1 ... From _John Mason_, Feb 14 2025: (Start) The first difference with A377941 occurs at n=5 when the following polyomino has maximum number of row or column cells = 2, but there are 3 cells on a 45 degree diagonal. O OO OO (End)
Links
- John Mason, Table of n, a(n) for n = 1..153
- Dave Budd, Python code for a square lattice
Extensions
More terms from Pontus von Brömssen, Nov 12 2024
Comments