A380991 a(n) = largest number of cells of a polyomino with at most n collinear cell centers.
1, 4, 15, 48
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Dave Budd has authored 8 sequences.
# See links
For n=15, the only polyomino is ### ### ### ## # ###
# See link
For n=23, the 2 hexagon polyominoes are: @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
# See links
| k n | 1 2 3 4 5 6 7 8 9 10 Total --------------------------------------------------------------------------------------- 1 | 1 1 2 | 0 1 1 3 | 0 2 1 3 4 | 0 4 2 1 7 5 | 0 3 15 3 1 22 6 | 0 5 50 23 3 1 82 7 | 0 1 171 126 30 4 1 333 8 | 0 1 506 710 187 39 4 1 1448 9 | 0 1 1459 3520 1268 270 48 5 1 6572 10 | 0 1 3792 16617 7703 1948 364 59 5 1 30490 The T(4,2)=4 hexagon polyominoes are: # # # # # # # # # # # # # # # #
| k n | 1 2 3 4 5 6 7 8 9 10 Total --------------------------------------------------------------------------------------- 1 | 1 1 2 | 0 1 1 3 | 0 2 1 3 4 | 0 4 2 1 7 5 | 0 2 16 3 1 22 6 | 0 3 52 23 3 1 82 7 | 0 0 169 129 30 4 1 333 8 | 0 0 477 740 187 39 4 1 1448 9 | 0 0 1245 3729 1274 270 48 5 1 6572 10 | 0 0 2750 17578 7785 1948 364 59 5 1 30490 The T(5,2)=2 hexagon polyominoes are: # # # # # # # # # #
| k n | 1 2 3 4 5 6 7 8 9 10 Total ---------------------------------------------------------------------------------- 1 | 1 1 2 | 0 1 1 3 | 0 1 1 2 4 | 0 2 2 1 5 5 | 0 1 8 2 1 12 6 | 0 1 17 13 3 1 35 7 | 0 1 39 45 19 3 1 108 8 | 0 1 79 182 77 25 4 1 369 9 | 0 1 162 607 363 114 33 4 1 1285 10 | 0 1 301 2004 1539 593 170 41 5 1 4655 ... The T(4,2)=2 polyominoes are: * * * * * * * *
| k n | 1 2 3 4 5 6 7 8 9 10 ---------------------------------------------------------------------------- 1 | 1 2 | 0 1 3 | 0 1 1 4 | 0 2 2 1 5 | 0 0 9 2 1 6 | 0 0 18 13 3 1 7 | 0 0 37 48 19 3 1 8 | 0 0 62 200 77 25 4 1 9 | 0 0 86 678 369 114 33 4 1 10 | 0 0 78 2177 1590 593 170 41 5 1 ... From _John Mason_, Feb 14 2025: (Start) The first difference with A377941 occurs at n=5 when the following polyomino has maximum number of row or column cells = 2, but there are 3 cells on a 45 degree diagonal. O OO OO (End)
Comments