cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A377941 Triangle read by rows: T(n,k) = number of free polyominoes with n cells, where the maximum number of cells in any row or column is k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 1, 8, 2, 1, 0, 1, 17, 13, 3, 1, 0, 1, 39, 45, 19, 3, 1, 0, 1, 79, 182, 77, 25, 4, 1, 0, 1, 162, 607, 363, 114, 33, 4, 1, 0, 1, 301, 2004, 1539, 593, 170, 41, 5, 1, 0, 1, 589, 6139, 6361, 2764, 928, 234, 51, 5, 1, 0, 1, 1141, 18278, 25072, 12733, 4597, 1387, 323, 61, 6, 1
Offset: 1

Views

Author

Dave Budd, Nov 11 2024

Keywords

Comments

The row sum are the total number of polyominoes with n cells.

Examples

			   | k
n  |       1      2      3      4      5      6      7      8      9     10  Total
----------------------------------------------------------------------------------
 1 |       1                                                                     1
 2 |       0      1                                                              1
 3 |       0      1      1                                                       2
 4 |       0      2      2      1                                                5
 5 |       0      1      8      2      1                                        12
 6 |       0      1     17     13      3      1                                 35
 7 |       0      1     39     45     19      3      1                         108
 8 |       0      1     79    182     77     25      4      1                  369
 9 |       0      1    162    607    363    114     33      4      1          1285
10 |       0      1    301   2004   1539    593    170     41      5      1   4655
 ...
The T(4,2)=2 polyominoes are:
  * *      * *
  * *        * *
		

Crossrefs

Row sums are A000105.
Cf. A377942.

Extensions

More terms from Pontus von Brömssen, Nov 12 2024

A378169 Number of free polyominoes with n cells with at most 3 collinear cell centers on any line in the plane.

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 37, 62, 86, 78, 61, 34, 14, 4, 1
Offset: 1

Views

Author

Dave Budd, Nov 18 2024

Keywords

Examples

			For n=15, the only polyomino is
    ###
  ###
###
  ## #
   ###
		

Crossrefs

Programs

  • Python
    # See link

Formula

a(n) = Sum_{k=1..3} A377942(n,k).

A378015 Triangle read by rows: T(n,k) = number of free hexagonal polyominoes with n cells, where the maximum number of collinear cell centers on any line in the plane is k.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 2, 16, 3, 1, 0, 3, 52, 23, 3, 1, 0, 0, 169, 129, 30, 4, 1, 0, 0, 477, 740, 187, 39, 4, 1, 0, 0, 1245, 3729, 1274, 270, 48, 5, 1, 0, 0, 2750, 17578, 7785, 1948, 364, 59, 5, 1, 0, 0, 5380, 75827, 46045, 12895, 2840, 488, 70, 6, 1
Offset: 1

Views

Author

Dave Budd, Nov 14 2024

Keywords

Comments

The row sums are the total number of free hexagon polyominoes with n cells.

Examples

			   |  k
 n |       1      2      3      4      5      6      7      8      9     10       Total
---------------------------------------------------------------------------------------
 1 |       1                                                                          1
 2 |       0      1                                                                   1
 3 |       0      2      1                                                            3
 4 |       0      4      2      1                                                     7
 5 |       0      2     16      3      1                                             22
 6 |       0      3     52     23      3      1                                      82
 7 |       0      0    169    129     30      4      1                              333
 8 |       0      0    477    740    187     39      4      1                      1448
 9 |       0      0   1245   3729   1274    270     48      5      1               6572
10 |       0      0   2750  17578   7785   1948    364     59      5      1       30490
The T(5,2)=2 hexagon polyominoes are:
 #          #   #
#   #        # #
 # #        #
		

Crossrefs

Cf. A000228 (row sums).
Cf. A377942 (similar collinear cell constraint for square polyominoes).
Cf. A377756 (specific case for the cumulative value for k<=3 i.e. T(n,1)+T(n,2)+T(n,3) ).
Cf. A378014 (collinear cell constraint applied only to cells on lattice lines).

A380990 Number of free polyominoes with n cells with at most 4 collinear cell centers on any line in the plane.

Original entry on oeis.org

1, 1, 2, 5, 11, 31, 85, 262, 764, 2255, 6341, 17221, 43994, 106205, 239367, 502611, 977791, 1771624, 2989373, 4687803, 6819069, 9234529, 11622453, 13527854, 14571011, 14643347, 13747913, 12041014, 9905945, 7763985, 5805906, 4139266, 2858796, 1971455, 1368967, 942226, 618148, 368480, 186275, 73649, 20236, 3476, 400, 96, 27, 12, 2, 1
Offset: 1

Views

Author

Dave Budd, Feb 11 2025

Keywords

Crossrefs

Programs

  • Python
    # See links

Formula

a(n) = Sum_{k=1..4} A377942(n,k).
Showing 1-4 of 4 results.