cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A379994 Expansion of e.g.f. exp(-3*x)/(exp(-x) - x)^4.

Original entry on oeis.org

1, 5, 37, 349, 3969, 52641, 796069, 13502693, 253667297, 5225690017, 117090480021, 2834363683317, 73697918467105, 2048252470006913, 60587779740857573, 1900347489736371301, 62992469337321611073, 2200238756416513719489, 80765631192992760237205
Offset: 0

Views

Author

Seiichi Manyama, Jan 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(n-k)*binomial(k+3, 3)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (k+1)^(n-k) * binomial(k+3,3)/(n-k)!.
a(n) == 1 (mod 4).

A379995 Expansion of e.g.f. exp(-2*x)/(exp(-x) - x)^4.

Original entry on oeis.org

1, 6, 48, 476, 5608, 76372, 1179016, 20332580, 387225120, 8068825988, 182564048824, 4456476380644, 116724944900272, 3264981100202564, 97130013288324552, 3062011655207131748, 101963095705628194624, 3576126056313566090500, 131762871920106615643480
Offset: 0

Views

Author

Seiichi Manyama, Jan 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (k+2)^(n-k)*binomial(k+3, 3)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (k+2)^(n-k) * binomial(k+3,3)/(n-k)!.
a(n) ~ n! * n^3 / (6 * (LambertW(1) + 1)^4 * LambertW(1)^(n+2)). - Vaclav Kotesovec, Jan 08 2025

A379996 Expansion of e.g.f. exp(-x)/(exp(-x) - x)^4.

Original entry on oeis.org

1, 7, 61, 639, 7825, 109683, 1731645, 30403495, 587595649, 12395233539, 283385424829, 6979650164391, 184235963026833, 5188528445210035, 155284012799863453, 4921569063327156807, 164672737994453759617, 5800532536265417597571, 214559605389429001486557
Offset: 0

Views

Author

Seiichi Manyama, Jan 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[-x]/(Exp[-x]-x)^4,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 19 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n, (k+3)^(n-k)*binomial(k+3, 3)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (k+3)^(n-k) * binomial(k+3,3)/(n-k)!.

A380841 Array read by ascending antidiagonals: A(n,k) = n! * [x^n] 1/(1 - x*exp(x))^k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 21, 10, 3, 1, 0, 148, 66, 18, 4, 1, 0, 1305, 560, 141, 28, 5, 1, 0, 13806, 5770, 1380, 252, 40, 6, 1, 0, 170401, 69852, 16095, 2776, 405, 54, 7, 1, 0, 2403640, 970886, 217458, 35940, 4940, 606, 70, 8, 1, 0, 38143377, 15228880, 3335745, 533304, 70045, 8088, 861, 88, 9, 1
Offset: 0

Views

Author

Stefano Spezia, Feb 05 2025

Keywords

Examples

			Array begins as:
  1,    1,    1,     1,     1,     1,      1, ...
  0,    1,    2,     3,     4,     5,      6, ...
  0,    4,   10,    18,    28,    40,     54, ...
  0,   21,   66,   141,   252,   405,    606, ...
  0,  148,  560,  1380,  2776,  4940,   8088, ...
  0, 1305, 5770, 16095, 35940, 70045, 124350, ...
  ...
		

Crossrefs

Cf. A380843 (antidiagonal sums).
Columns k=0..4 give A000007, A006153, A377529, A377530, A379993.
Rows n=0..2 give A000012, A001477, A028552.
Main diagonal gives A380842.
A(n,n+1) gives A213643(n+1).

Programs

  • Mathematica
    A[n_,k_]:=n!SeriesCoefficient[1/(1-x*Exp[x])^k,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

A(n,k) = n! * Sum_{j=0..n} j^(n-j) * binomial(j+k-1,j)/(n-j)!. - Seiichi Manyama, Feb 06 2025
Showing 1-4 of 4 results.