cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A053816 Another version of the Kaprekar numbers (A006886): n such that n = q+r and n^2 = q*10^m+r, for some m >= 1, q >= 0 and 0 <= r < 10^m, with n != 10^a, a >= 1 and n an m-digit number.

Original entry on oeis.org

1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, 4950, 5050, 7272, 7777, 9999, 17344, 22222, 77778, 82656, 95121, 99999, 142857, 148149, 181819, 187110, 208495, 318682, 329967, 351352, 356643, 390313, 461539, 466830, 499500, 500500, 533170, 538461, 609687, 643357
Offset: 1

Views

Author

Keywords

Comments

Consider an m-digit number n. Square it and add the right m digits to the left m or m-1 digits. If the resultant sum is n, then n is a term of the sequence.
4879 and 5292 are in A006886 but not in this version.
Shape of plot (see links) seems to consist of line segments whose lengths along the x-axis depend on the number of unitary divisors of 10^m-1 which is equal to 2^w if m is a multiple of 3 or 2^(w+1) otherwise, where w is the number of distinct prime factors of the repunit of length m (A095370). w for m = 60 is 20, whereas w <= 15 for m < 60. This leads to the long segment corresponding to m = 60. - Chai Wah Wu, Jun 02 2016
If n*(n-1) is divisible by 10^m-1 then n is a term where m is the number of decimal digits in n. - Giorgos Kalogeropoulos, Mar 27 2025

Examples

			703 is Kaprekar because 703 = 494 + 209, 703^2 = 494209.
		

References

  • D. R. Kaprekar, On Kaprekar numbers, J. Rec. Math., 13 (1980-1981), 81-82.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 151.

Crossrefs

Programs

  • Haskell
    a053816 n = a053816_list !! (n-1)
    a053816_list = 1 : filter f [4..] where
       f x = length us - length vs <= 1 &&
             read (reverse us) + read (reverse vs) == x
             where (us, vs) = splitAt (length $ show x) (reverse $ show (x^2))
    -- Reinhard Zumkeller, Oct 04 2014
    
  • Mathematica
    kapQ[n_]:=Module[{idn2=IntegerDigits[n^2],len},len=Length[idn2];FromDigits[ Take[idn2,Floor[len/2]]]+FromDigits[Take[idn2, -Ceiling[len/2]]]==n]; Select[Range[540000],kapQ] (* Harvey P. Dale, Aug 22 2011 *)
    ktQ[n_] := ((x = n^2) - (z = FromDigits[Take[IntegerDigits[x], y = -IntegerLength[n]]]))*10^y + z == n; Select[Range[540000], ktQ] (* Jayanta Basu, Aug 04 2013 *)
    Select[Range[540000],Total[FromDigits/@TakeDrop[IntegerDigits[#^2], Floor[ IntegerLength[ #^2]/2]]] ==#&] (* The program uses the TakeDrop function from Mathematica version 10 *) (* Harvey P. Dale, Jun 03 2016 *)
    maxDigits=6; Flatten[Table[lst={};sub=Subsets@FactorInteger[v=10^d-1]; Do[a=Times@@Power@@@s; n=ChineseRemainder[{0,1},{a,v/a},1]; If[10^(d-1)<=n<10^d,AppendTo[lst,n]],{s,sub}];Union@lst,{d,maxDigits}]] (* Giorgos Kalogeropoulos, Mar 27 2025 *)
  • PARI
    isok(n) = n == vecsum(divrem(n^2, 10^(1+logint(n, 10)))); \\ Ruud H.G. van Tol, Jun 02 2024
    
  • Python
    def is_A053816(n): return n==sum(divmod(n**2,10**len(str(n)))) and n
    print(upto_1e5:=list(filter(is_A053816, range(10**5)))) # M. F. Hasler, Mar 28 2025

Extensions

More terms from Michel ten Voorde, Apr 11 2001
Showing 1-1 of 1 results.