A380853 Number of ways to place six distinct positive integers on a triangle, three on the corners and three on the sides such that the sum of the three values on each side is n.
0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 13, 14, 25, 37, 47, 58, 89, 98, 126, 159, 188, 219, 276, 303, 362, 423, 478, 536, 633, 688, 781, 881, 973, 1068, 1211, 1301, 1443, 1589, 1724, 1866, 2066, 2202, 2396, 2598, 2790, 2986, 3250, 3439, 3699, 3967, 4219, 4480, 4819, 5071
Offset: 1
Examples
The a(9) = 1 solution is: 1 5 6 3 4 2
Links
- R. J. Mathar, Illustrations - Examples (2025)
- Index entries for linear recurrences with constant coefficients, signature (-1,0,2,3,2,0,-3,-4,-3,0,2,3,2,0,-1,-1).
Programs
-
Maple
A380853 := proc(n) -3412+2353*n+30*n^3-480*n^2+(135*n-900)*(-1)^n ; %-144*(2*A010891(n)+A010891(n-1)+2*A010891(n-2)) ; %-160*(17*A049347(n)+8*A049347(n-1)) ; %-360*A057077(n) ; %+480*(-1)^n*(A099254(n)-A099254(n-1)) ; %/720 ; end proc: seq(A380853(n),n=1..40) ; # R. J. Mathar, Feb 27 2025
-
PARI
a(n) = my(c=0, t); for(x=3, n-5, t=n-x; for(y=2, min(x-1, t-1), for(z=1, y-1, if(#Set([x, y, z, t-y, t-z, n-y-z])==6, c++)))); c; \\ Jinyuan Wang, Feb 07 2025
Formula
G.f.: x^9*(1 + 4*x + 8*x^2 + 16*x^3 + 18*x^4 + 18*x^5 + 15*x^6 + 10*x^7)/((1 - x)^4*(1 + 2*x + 2*x^2 + x^3)^2*(1 + x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6)). - Stefano Spezia, Feb 08 2025
A380105(n) = a(n)-a(n-3). - R. J. Mathar, Mar 13 2025
Comments