cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380953 Numbers m such that the sum of its distinct prime factors and the sum of its nonprime divisors are both squares.

Original entry on oeis.org

1, 323, 3887, 5183, 149903, 311790, 777923, 1327103, 6718463, 12446783, 14605487, 16402499, 20373435, 28128270, 30856494, 33144430, 37058230, 37380745, 68661901, 86755609, 139557721, 159954570, 221294682, 222538813, 229159043, 269108440, 360590058, 412621345
Offset: 1

Views

Author

Michel Lagneau, Feb 09 2025

Keywords

Comments

Or numbers m such that A008472(m) and (A000203(m) - A008472(m)) are both squares.

Examples

			s1 is the sum of the prime factors, s2 is the sum of the nonprime divisors.
+----------------------------+-------------------------+-----+-------+
|    m   |  prime factors    |   nonprimedivisors      |  s1 |  s2   |
+----------------------------+-------------------------+-----+-------+
|    323 | {17, 19}          | {1, 323}                | 6^2 |  18^2 |
+----------------------------+-------------------------+-----+-------+
|   3887 | {13, 23}          | {1, 169, 299, 3887}     | 6^2 |  66^2 |
+----------------------------+-------------------------+-----+-------+
|   5183 | {71, 73}          | {1, 5183}               |12^2 |  72^2 |
+----------------------------+-------------------------+-----+-------+
| 149903 | {13, 887}         | {1, 169, 11531, 149903} |30^2 | 402^2 |
+----------------------------+-------------------------+-----+-------+
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^8:print(1):
    for m from 2 to nn do:
     d:=factorset(m):n0:=nops(d):s:=sum('d[i]', 'i'=1..n0):
        if issqr(s) and issqr(sigma(m)-s) then print(m):
         else
        fi:
     od:
  • PARI
    isok(m) = my(f=factor(m), s=sum(k=1, #f~, f[k,1])); issquare(s) && issquare(sigma(f)-s); \\ Michel Marcus, Feb 09 2025

Extensions

More terms from Jinyuan Wang, Feb 11 2025