A380953 Numbers m such that the sum of its distinct prime factors and the sum of its nonprime divisors are both squares.
1, 323, 3887, 5183, 149903, 311790, 777923, 1327103, 6718463, 12446783, 14605487, 16402499, 20373435, 28128270, 30856494, 33144430, 37058230, 37380745, 68661901, 86755609, 139557721, 159954570, 221294682, 222538813, 229159043, 269108440, 360590058, 412621345
Offset: 1
Keywords
Examples
s1 is the sum of the prime factors, s2 is the sum of the nonprime divisors. +----------------------------+-------------------------+-----+-------+ | m | prime factors | nonprimedivisors | s1 | s2 | +----------------------------+-------------------------+-----+-------+ | 323 | {17, 19} | {1, 323} | 6^2 | 18^2 | +----------------------------+-------------------------+-----+-------+ | 3887 | {13, 23} | {1, 169, 299, 3887} | 6^2 | 66^2 | +----------------------------+-------------------------+-----+-------+ | 5183 | {71, 73} | {1, 5183} |12^2 | 72^2 | +----------------------------+-------------------------+-----+-------+ | 149903 | {13, 887} | {1, 169, 11531, 149903} |30^2 | 402^2 | +----------------------------+-------------------------+-----+-------+
Programs
-
Maple
with(numtheory):nn:=10^8:print(1): for m from 2 to nn do: d:=factorset(m):n0:=nops(d):s:=sum('d[i]', 'i'=1..n0): if issqr(s) and issqr(sigma(m)-s) then print(m): else fi: od:
-
PARI
isok(m) = my(f=factor(m), s=sum(k=1, #f~, f[k,1])); issquare(s) && issquare(sigma(f)-s); \\ Michel Marcus, Feb 09 2025
Extensions
More terms from Jinyuan Wang, Feb 11 2025
Comments