cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A033030 Derangement numbers d(n,3) where d(n,k) = k(n-1)(d(n-1,k) + d(n-2,k)), with d(0,k) = 1 and d(1,k) = 0.

Original entry on oeis.org

1, 0, 3, 18, 189, 2484, 40095, 766422, 16936857, 424878696, 11929019931, 370616958810, 12624017298453, 467806833261468, 18736803171836919, 806593620214132254, 37139869052368612785, 1821430208283971761872, 94787073944153359107507, 5216859224231615866946466
Offset: 0

Views

Author

N. J. A. Sloane, Nov 02 2003

Keywords

Examples

			3= 3*(1+0), 18 =6*(0+3), 189=9*(18+3), 2484=12*(189+18)... [From _Gary Detlefs_, May 16 2010]
		

Crossrefs

d(n, 1) gives A000166, d(n, 2) gives A053871, d(n, 4) gives A088991, d(n, 5) gives A088992.
Cf. A381484.

Programs

  • Maple
    k := 3; d := proc(n) global k; option remember; if n = 0 then RETURN(1) end if; if n = 1 then RETURN(0) end if; k*(n - 1)*(d(n - 1) + d(n - 2)) end proc;
  • Mathematica
    d[n_, k_] := d[n, k] = k(n-1)(d[n-1, k] + d[n-2, k]);
    d[0, ] = 1; d[1, ] = 0;
    a[n_] := d[n, 3];
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 20 2023 *)

Formula

Inverse binomial transform of A007559. E.g.f.: exp(-x)/(1-3*x)^(1/3). - Vladeta Jovovic, Dec 17 2003
a(n) = 3(n-1)(a(n-1)+a(n-2)), n>1. - Gary Detlefs, May 16 2010
a(n) ~ Gamma(2/3) * 3^(n + 1/2) * n^(n-1/6) / (sqrt(2*Pi) * exp(n + 1/3)). - Vaclav Kotesovec, Oct 31 2017
From Seiichi Manyama, Apr 23 2025: (Start)
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A381484.
a(n) = (-1)^n * n! * Sum_{k=0..n} 3^k * binomial(-1/3,k)/(n-k)!. (End)

A381504 Expansion of e.g.f. exp(-x/4) / (1-4*x)^(1/16).

Original entry on oeis.org

1, 0, 1, 8, 99, 1616, 32815, 797256, 22552873, 728069984, 26413495281, 1063820511080, 47098650935611, 2273501091042288, 118834339196361919, 6686552010270859496, 402975635704196998545, 25897425517232941658816, 1767875520978811381774753, 127753191169784612437640904
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-x/4)/(1-4*x)^(1/16)))

Formula

a(n) = (-1)^n * n! * Sum_{k=0..n} (1/4)^(n-2*k) * binomial(-1/16,k)/(n-k)!.
a(n) = (n-1) * (4*a(n-1) + a(n-2)) for n > 1.
a(n) ~ sqrt(Pi) * 2^(2*n + 1/2) * n^(n - 7/16) / (Gamma(1/16) * exp(n + 1/16)). - Vaclav Kotesovec, Apr 23 2025
Showing 1-2 of 2 results.