A382339 Triangle read by rows: T(n,k) is the number of partitions of a 2-colored set of n objects into exactly k parts with 0 <= k <= n.
1, 0, 2, 0, 3, 3, 0, 4, 6, 4, 0, 5, 14, 9, 5, 0, 6, 22, 24, 12, 6, 0, 7, 37, 49, 34, 15, 7, 0, 8, 52, 92, 76, 44, 18, 8, 0, 9, 76, 157, 162, 103, 54, 21, 9, 0, 10, 100, 260, 302, 232, 130, 64, 24, 10, 0, 11, 135, 400, 554, 468, 302, 157, 74, 27, 11
Offset: 0
Examples
Triangle begins: 0 : [1] 1 : [0, 2] 2 : [0, 3, 3] 3 : [0, 4, 6, 4] 4 : [0, 5, 14, 9, 5] 5 : [0, 6, 22, 24, 12, 6] 6 : [0, 7, 37, 49, 34, 15, 7] 7 : [0, 8, 52, 92, 76, 44, 18, 8] 8 : [0, 9, 76, 157, 162, 103, 54, 21, 9] 9 : [0, 10, 100, 260, 302, 232, 130, 64, 24, 10] 10 : [0, 11, 135, 400, 554, 468, 302, 157, 74, 27, 11] ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (n+1)*x^n, add(b(n-i*j, min(n-i*j, i-1))*binomial(i+j, j)*x^j, j=0..n/i))) end: T:= (n, k)-> coeff(b(n$2), x, k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 22 2025
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, (n + 1)*x^n, Sum[b[n - i*j, Min[n - i*j, i - 1]]*Binomial[i + j, j]*x^j, {j, 0, n/i}]]]; T[n_, k_] := Coefficient[b[n, n], x, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 17 2025, after Alois P. Heinz *)
-
Python
from sympy import binomial from sympy.utilities.iterables import partitions def t_row( n): if n == 0 : return [1] t = list( [0] * n) for p in partitions( n): fact = 1 s = 0 for k in p : s += p[k] fact *= binomial( k + p[k], p[k]) if s > 0 : t[s - 1] += fact return [0] + t
Comments