A383351
Triangle read by rows: T(n, k) is the number of partitions of a 2-colored set of n objects into k parts where 0 <= k <= n, and each part is one of 2 kinds.
Original entry on oeis.org
1, 0, 4, 0, 6, 10, 0, 8, 24, 20, 0, 10, 53, 60, 35, 0, 12, 88, 164, 120, 56, 0, 14, 144, 348, 370, 210, 84, 0, 16, 208, 672, 904, 700, 336, 120, 0, 18, 299, 1174, 1998, 1870, 1183, 504, 165, 0, 20, 400, 1952, 3952, 4524, 3360, 1848, 720, 220
Offset: 0
Triangle starts:
0 : [1]
1 : [0, 4]
2 : [0, 6, 10]
3 : [0, 8, 24, 20]
4 : [0, 10, 53, 60, 35]
5 : [0, 12, 88, 164, 120, 56]
6 : [0, 14, 144, 348, 370, 210, 84]
7 : [0, 16, 208, 672, 904, 700, 336, 120]
8 : [0, 18, 299, 1174, 1998, 1870, 1183, 504, 165]
9 : [0, 20, 400, 1952, 3952, 4524, 3360, 1848, 720, 220]
10 : [0, 22, 534, 3052, 7394, 9834, 8652, 5488, 2724, 990, 286]
...
-
from sympy import binomial
from sympy.utilities.iterables import partitions
def calc_w(k , m):
s = 0
for p in partitions(m, m=k+1):
fact = 1
j = k + 1
for x in p :
fact *= binomial(j, p[x]) * (x + 1) ** p[x]
j -= p[x]
s += fact
return s
def t_row(n):
if n == 0 : return [1]
t = list([0] * n)
for p in partitions( n):
fact = 1
s = 0
for k in p :
s += p[k]
fact *= calc_w(k, p[k])
if s > 0 :
t[s - 1] += fact
return [0] + t
A382340
Triangle read by rows: T(n,k) is the number of partitions of a 3-colored set of n objects into exactly k parts with 0 <= k <= n.
Original entry on oeis.org
1, 0, 3, 0, 6, 6, 0, 10, 18, 10, 0, 15, 51, 36, 15, 0, 21, 105, 123, 60, 21, 0, 28, 208, 326, 226, 90, 28, 0, 36, 360, 771, 678, 360, 126, 36, 0, 45, 606, 1641, 1836, 1161, 525, 168, 45, 0, 55, 946, 3271, 4431, 3403, 1775, 721, 216, 55, 0, 66, 1446, 6096, 10026, 8982, 5472, 2520, 948, 270, 66
Offset: 0
Triangle starts:
0 : [1]
1 : [0, 3]
2 : [0, 6, 6]
3 : [0, 10, 18, 10]
4 : [0, 15, 51, 36, 15]
5 : [0, 21, 105, 123, 60, 21]
6 : [0, 28, 208, 326, 226, 90, 28]
7 : [0, 36, 360, 771, 678, 360, 126, 36]
8 : [0, 45, 606, 1641, 1836, 1161, 525, 168, 45]
9 : [0, 55, 946, 3271, 4431, 3403, 1775, 721, 216, 55]
10 : [0, 66, 1446, 6096, 10026, 8982, 5472, 2520, 948, 270, 66]
...
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1))*binomial(i*(i+3)/2+j, j)*x^j, j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 22 2025
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1]]*Binomial[i*(i + 3)/2 + j, j]*x^j, {j, 0, n/i}]]]];
T[n_, k_] := Coefficient[b[n, n], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 17 2025, after Alois P. Heinz *)
-
from sympy import binomial
from sympy.utilities.iterables import partitions
colors = 3 - 1 # the number of colors - 1
def t_row( n):
if n == 0 : return [1]
t = list( [0] * n)
for p in partitions( n):
fact = 1
s = 0
for k in p :
s += p[k]
fact *= binomial( binomial( k + colors, colors) + p[k] - 1, p[k])
if s > 0 :
t[s - 1] += fact
return [0] + t
A382341
Triangle read by rows: T(n,k) is the number of partitions of a 4-colored set of n objects into exactly k parts with 0 <= k <= n.
Original entry on oeis.org
1, 0, 4, 0, 10, 10, 0, 20, 40, 20, 0, 35, 135, 100, 35, 0, 56, 340, 420, 200, 56, 0, 84, 784, 1370, 950, 350, 84, 0, 120, 1596, 3900, 3580, 1800, 560, 120, 0, 165, 3070, 9905, 11835, 7425, 3045, 840, 165, 0, 220, 5500, 23180, 34780, 27020, 13360, 4760, 1200, 220
Offset: 0
Triangle starts:
0 : [1]
1 : [0, 4]
2 : [0, 10, 10]
3 : [0, 20, 40, 20]
4 : [0, 35, 135, 100, 35]
5 : [0, 56, 340, 420, 200, 56]
6 : [0, 84, 784, 1370, 950, 350, 84]
7 : [0, 120, 1596, 3900, 3580, 1800, 560, 120]
8 : [0, 165, 3070, 9905, 11835, 7425, 3045, 840, 165]
9 : [0, 220, 5500, 23180, 34780, 27020, 13360, 4760, 1200, 220]
10 : [0, 286, 9466, 50480, 94030, 87992, 51886, 21840, 7020, 1650, 286]
...
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1))*binomial(i*(i^2+6*i+11)/6+j, j)*x^j, j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 22 2025
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1]]*Binomial[i*(i^2 + 6*i + 11)/6 + j, j]*x^j, {j, 0, n/i}]]]];
T[n_, k_] := Coefficient[b[n, n], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 17 2025, after Alois P. Heinz *)
-
from sympy import binomial
from sympy.utilities.iterables import partitions
colors = 4 - 1 # the number of colors - 1
def t_row( n):
if n == 0 : return [1]
t = list( [0] * n)
for p in partitions( n):
fact = 1
s = 0
for k in p :
s += p[k]
fact *= binomial( binomial( k + colors, colors) + p[k] - 1, p[k])
if s > 0 :
t[s - 1] += fact
return [0] + t
Showing 1-3 of 3 results.