cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A381717 Number of integer partitions of n that cannot be partitioned into constant multisets with distinct block-sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 3, 2, 3, 6, 7, 10, 15, 15, 28, 37, 47, 64, 71, 97, 139, 173, 215, 273, 361, 439, 551, 691, 853, 1078, 1325, 1623, 2046, 2458, 2998, 3697, 4527, 5472, 6590, 7988, 9590, 11598, 13933, 16560, 19976, 23822, 28420, 33797, 40088, 47476, 56369, 66678
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2025

Keywords

Comments

Conjecture: Also the number of integer partitions of n having no permutation with all distinct run-sums, ranked by zeros of A382876. In other words, a partition has a permutation with all distinct run-sums iff it has a multiset partition into constant blocks with all distinct block-sums, where the run-sums of a sequence are obtained by splitting it into maximal runs and taking their sums.

Examples

			For y = (3,2,2,1) we have the multiset partition {{3},{2,2},{1}}, so y is not counted under a(8).
For y = (3,2,1,1,1) there are 3 multiset partitions into constant multisets:
  {{3},{2},{1,1,1}}
  {{3},{2},{1,1},{1}}
  {{3},{2},{1},{1},{1}}
but none of these has distinct block-sums, so y is counted under a(8).
For y = (3,3,1,1,1,1,1,1) we have multiset partitions:
  {{1},{3,3},{1,1,1,1,1}}
  {{1,1},{3,3},{1,1,1,1}}
  {{1},{1,1},{3,3},{1,1,1}}
so y is not counted under a(12).
The a(4) = 1 through a(13) = 10 partitions:
  211  .  .  3211  422    4221  6211   4322     633      5422
                   4211   5211  33211  7211     8211     6331
                   32111        42211  43211    43221    9211
                                       422111   44211    54211
                                       431111   53211    63211
                                       3221111  432111   333211
                                                4221111  432211
                                                         532111
                                                         4321111
                                                         42211111
		

Crossrefs

Twice-partitions of this type (constant with distinct) are counted by A279786.
Multiset partitions of this type are ranked by A326535 /\ A355743.
These partitions are ranked by A381636, zeros of A381635.
For strict instead of constant blocks we have A381990, see A381806, A381633, A382079.
For equal instead of distinct block-sums we have A381993.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers, see A381455, A381453.
A001055 counts factorizations, strict A045778, see A317141, A300383.
A050361 counts factorizations into distinct prime powers.

Programs

  • Mathematica
    mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
    Table[Length[Select[IntegerPartitions[n],Select[Join@@@Tuples[mce/@Split[#]],UnsameQ@@Total/@#&]=={}&]],{n,0,30}]

Extensions

a(37)-a(53) from Robert Price, Mar 31 2025

A381992 Number of integer partitions of n that can be partitioned into sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 170, 217, 282, 360, 449, 571, 719, 899, 1122, 1391, 1727, 2136, 2616, 3209, 3947, 4800, 5845, 7094, 8602, 10408, 12533, 15062, 18107, 21686, 25956, 30967, 36936, 43897, 52132, 61850, 73157, 86466, 101992, 120195
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2025

Keywords

Comments

Also the number of integer partitions of n whose Heinz number belongs to A382075 (can be written as a product of squarefree numbers with distinct sums of prime indices).

Examples

			There are 6 ways to partition (3,2,2,1) into sets:
  {{2},{1,2,3}}
  {{1,2},{2,3}}
  {{1},{2},{2,3}}
  {{2},{2},{1,3}}
  {{2},{3},{1,2}}
  {{1},{2},{2},{3}}
Of these, 3 have distinct block sums:
  {{2},{1,2,3}}
  {{1,2},{2,3}}
  {{1},{2},{2,3}}
so (3,2,2,1) is counted under a(8).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)  (3)    (4)      (5)      (6)        (7)        (8)
            (2,1)  (3,1)    (3,2)    (4,2)      (4,3)      (5,3)
                   (2,1,1)  (4,1)    (5,1)      (5,2)      (6,2)
                            (2,2,1)  (3,2,1)    (6,1)      (7,1)
                            (3,1,1)  (4,1,1)    (3,2,2)    (3,3,2)
                                     (2,2,1,1)  (3,3,1)    (4,2,2)
                                                (4,2,1)    (4,3,1)
                                                (5,1,1)    (5,2,1)
                                                (3,2,1,1)  (6,1,1)
                                                           (3,2,2,1)
                                                           (3,3,1,1)
                                                           (4,2,1,1)
                                                           (3,2,1,1,1)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Twice-partitions of this type are counted by A279785.
Multiset partitions of this type are counted by A381633, zeros of A381634.
For constant instead of strict blocks see A381717, A381636, A381635, A381716, A381991.
Normal multiset partitions of this type are counted by A381718, see A116539.
The complement is counted by A381990, ranked by A381806.
These partitions are ranked by A382075.
For distinct blocks instead of sums we have A382077, complement A382078.
For a unique choice we have A382079.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
A382201 lists MM-numbers of sets with distinct sums.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,10}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A381990 Number of integer partitions of n that cannot be partitioned into a set (or multiset) of sets with distinct sums.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 127, 168, 208, 267, 343, 431, 536, 676, 836, 1045, 1283, 1582, 1949, 2395, 2895, 3549, 4298, 5216, 6281, 7569, 9104, 10953, 13078, 15652, 18627, 22207, 26325, 31278, 37002, 43708, 51597, 60807, 71533, 84031
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2025

Keywords

Examples

			The partition y = (3,3,3,2,2,1,1,1,1) has only one multiset partition into a set of sets, namely {{1},{3},{1,2},{1,3},{1,2,3}}, but this does not have distinct sums, so y is counted under a(17).
The a(2) = 1 through a(8) = 9 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
               (1111)  (11111)  (222)     (4111)     (2222)
                                (3111)    (22111)    (5111)
                                (21111)   (31111)    (22211)
                                (111111)  (211111)   (41111)
                                          (1111111)  (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Twice-partitions of this type are counted by A279785.
For constant instead of strict blocks see A381717, A381636, A381635, A381716, A381991.
Normal multiset partitions of this type are counted by A381718, see A116539.
These partitions are ranked by A381806, zeros of A381634 and A381633.
The complement is counted by A381992, ranked by A382075.
For distinct blocks we have A382078, complement A382077, unique A382079.
MM-numbers of these multiset partitions (strict blocks with distinct sum) are A382201.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,10}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A381870 Numbers whose prime indices have a unique multiset partition into sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2025

Keywords

Comments

First differs from A212166 in lacking 360.
First differs from A293511 in having 600.
Also numbers with a unique factorization into squarefree numbers with distinct sums of prime indices (A056239).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			For n = 600 the unique multiset partition is {{1},{1,3},{1,2,3}}. The unique factorization is 2*10*30.
		

Crossrefs

Without distinct block-sums we have A000961, ones in A050320.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
For distinct blocks instead of sums we have A293511, ones in A050326.
These are the positions of ones in A381633, see A381634, A381806, A381990.
Normal multiset partitions of this type are counted by A381718, see A279785.
For constant instead of strict blocks we have A381991, ones in A381635.
A001055 counts multiset partitions of prime indices, strict A045778.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A317141 counts coarsenings of prime indices, refinements A300383.
A321469 counts factorizations with distinct sums of prime indices, ones A166684.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[100],Length[Select[sfacs[#],UnsameQ@@hwt/@#&]]==1&]

A382460 Number of integer partitions of n that can be partitioned into sets with distinct sums in exactly one way.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 6, 5, 10, 10, 13, 15, 22, 20, 32, 32, 43, 49, 65, 64, 92, 96, 121, 140, 173, 192
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Examples

			The partition y = (3,3,2,1,1,1) has 2 partitions into sets: {{1},{3},{1,2},{1,3}} and {{1},{1,3},{1,2,3}}, but only the latter has distinct sums, so y is counted under a(11)
The a(1) = 1 through a(10) = 10 partitions (A=10):
  1  2  3  4    5    6     7    8      9      A
           211  221  411   322  332    441    433
                311  2211  331  422    522    442
                           511  611    711    622
                                3311   42111  811
                                32111         3322
                                              4411
                                              32221
                                              43111
                                              52111
		

Crossrefs

Twice-partitions of this type are counted by A279785.
Multiset partitions of this type are counted by A381633.
Normal multiset partitions of this type are counted by A381718.
These partitions are ranked by A381870.
For no choices we have A381990, ranks A381806, see A382078, ranks A293243.
For at least one choice we have A381992, ranks A382075, see A382077, ranks A382200.
For distinct blocks instead of block-sums we have A382079, ranks A293511.
MM-numbers of these multiset partitions are A382201, see A302478.
For constant instead of strict blocks we have A382301, ranks A381991.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.
A000041 counts integer partitions, strict A000009.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    ssfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&) /@ Select[ssfacs[n/d],Min@@#>d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Select[IntegerPartitions[n], Length[Select[ssfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]]==1&]],{n,0,15}]

A381994 Number of integer partitions of n that cannot be partitioned into sets with equal sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 9, 12, 17, 27, 43, 46, 82, 103, 133, 181, 258, 295
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2025

Keywords

Examples

			For y = (3,3,1,1) we have {{1,3},{1,3}}, so y is not counted under a(8).
For y = (3,2,2,1), although we have {{1,3},{2,2}}, the block {2,2} is not a set, so y is counted under a(8).
The a(4) = 1 through a(8) = 12 partitions:
  (2,1,1)  (2,2,1)    (4,1,1)      (3,2,2)        (3,3,2)
           (3,1,1)    (3,1,1,1)    (3,3,1)        (4,2,2)
           (2,1,1,1)  (2,1,1,1,1)  (5,1,1)        (6,1,1)
                                   (2,2,2,1)      (3,2,2,1)
                                   (3,2,1,1)      (4,2,1,1)
                                   (4,1,1,1)      (5,1,1,1)
                                   (2,2,1,1,1)    (2,2,2,1,1)
                                   (3,1,1,1,1)    (3,2,1,1,1)
                                   (2,1,1,1,1,1)  (4,1,1,1,1)
                                                  (2,2,1,1,1,1)
                                                  (3,1,1,1,1,1)
                                                  (2,1,1,1,1,1,1)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Twice-partitions of this type are counted by A279788.
Interchanging "constant" with "strict" gives A381717, see A381635, A381636, A381991.
Normal multiset partitions of this type are counted by A381718, see A279785.
These partitions are ranked by A381719, zeros of A382080.
For distinct instead of equal block-sums we have A381990, ranked by A381806.
For constant instead of strict blocks we have A381993.
A000041 counts integer partitions, strict A000009.
A050320 counts factorizations into squarefree numbers, see A381078, A381454.
A050326 counts factorizations into distinct squarefree numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A381633 counts set systems with distinct sums, see A381634, A293243.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#], And@@UnsameQ@@@#&&SameQ@@Total/@#&]]==0&]],{n,0,10}]

A382301 Number of integer partitions of n having a unique multiset partition into constant blocks with distinct sums.

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 8, 9, 14, 16, 25, 30, 41, 52, 69, 83, 105, 129, 164, 208, 263, 315, 388, 449, 573, 694
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Examples

			The a(4) = 3 through a(8) = 14 partitions and their unique multiset partition into constant blocks with distinct sums:
  {4}     {5}       {6}         {7}        {8}
  {22}    {1}{4}    {33}        {1}{6}     {44}
  {1}{3}  {2}{3}    {1}{5}      {2}{5}     {1}{7}
          {11}{3}   {2}{4}      {3}{4}     {2}{6}
          {1}{22}   {11}{4}     {11}{5}    {3}{5}
          {2}{111}  {11}{22}    {1}{33}    {11}{6}
                    {1}{2}{3}   {3}{22}    {2}{33}
                    {1}{11}{3}  {1}{2}{4}  {11}{33}
                                {3}{1111}  {11}{222}
                                           {1}{2}{5}
                                           {1}{3}{4}
                                           {1}{3}{22}
                                           {1}{4}{111}
                                           {1}{111}{22}
		

Crossrefs

For distinct blocks instead of block-sums we have A000726, ranks A004709.
Twice-partitions of this type (constant with distinct) are counted by A279786.
MM-numbers of these multiset partitions are A326535 /\ A355743.
For no choices we have A381717, ranks A381636, zeros of A381635.
The Heinz numbers of these partitions are A381991, positions of 1 in A381635.
Normal multiset partitions of this type are counted by A382203.
For at least one choice we have A382427.
For strict instead of constant blocks we have A382460, ranks A381870.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers, see A381455, A381453.
A001055 counts factorizations, strict A045778, see A317141, A300383, A265947.
A050361 counts factorizations into distinct prime powers.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[pfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]]==1&]],{n,0,10}]

A382427 Number of integer partitions of n that can be partitioned into constant blocks with distinct sums.

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 11, 14, 19, 28, 39, 50, 70, 91, 120, 161, 203, 260, 338, 426, 556, 695, 863, 1082, 1360, 1685
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

Conjecture: Also the number of integer partitions of n having a permutation with all distinct run-sums.

Examples

			The partition (3,2,2,2,1) can be partitioned as {{1},{2},{3},{2,2}} or {{1},{3},{2,2,2}}, so is counted under a(10).
The a(1) = 1 through a(7) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (1111)  (221)    (51)      (61)
                            (311)    (222)     (322)
                            (2111)   (321)     (331)
                            (11111)  (411)     (421)
                                     (2211)    (511)
                                     (3111)    (2221)
                                     (21111)   (4111)
                                     (111111)  (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Twice-partitions of this type (constant with distinct) are counted by A279786.
Multiset partitions of this type are ranked by A326535 /\ A355743.
The complement is counted by A381717, ranks A381636, zeros of A381635.
For strict instead of constant blocks we have A381992, ranks A382075.
For a unique choice we have A382301, ranks A381991.
Normal multiset partitions of this type are counted by A382203, sets A381718.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers, see A381455, A381453.
A001055 counts factorizations, strict A045778, see A317141, A300383, A265947.
A050361 counts factorizations into distinct prime powers.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Table[Length[Select[IntegerPartitions[n],Select[pfacs[Times@@Prime/@#],UnsameQ@@hwt/@#&]!={}&]],{n,0,10}]
Showing 1-8 of 8 results.