A357824
Total number A(n,k) of k-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 6, 3, 1, 1, 2, 9, 14, 10, 4, 1, 1, 2, 17, 36, 42, 20, 4, 1, 1, 2, 33, 98, 190, 132, 35, 5, 1, 1, 2, 65, 276, 882, 980, 429, 70, 5, 1, 1, 2, 129, 794, 4150, 7812, 5705, 1430, 126, 6, 1, 1, 2, 257, 2316, 19722, 65300, 78129, 33040, 4862, 252, 6
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, 2, ...
2, 3, 5, 9, 17, 33, 65, 129, ...
3, 6, 14, 36, 98, 276, 794, 2316, ...
3, 10, 42, 190, 882, 4150, 19722, 94510, ...
4, 20, 132, 980, 7812, 65300, 562692, 4939220, ...
4, 35, 429, 5705, 78129, 1083425, 15105729, 211106945, ...
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
end:
A:= (n, k)-> add(b(n, n-2*j)^k, j=0..n/2):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - 1, y + j], {j, {-1, 1}}]]];
A[n_, k_] := Sum[b[n, n - 2*j]^k, { j, 0, n/2}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 18 2022, after Alois P. Heinz *)
A382435
a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^6.
Original entry on oeis.org
1, 1, 3, 129, 1587, 39443, 1125383, 30211457, 1107074979, 36214609683, 1433494688871, 54495716261011, 2275005440977063, 95146470595975399, 4170974287982618639, 185640304224109725569, 8492643748223480148419, 395051289603660979274339, 18726850582009755291702599
Offset: 0
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
end:
a:= n-> 2*add(b(n, n-2*j)^6, j=0..n/2)-1:
seq(a(n), n=0..18); # Alois P. Heinz, Mar 25 2025
-
a(n) = sum(k=0, n, (binomial(n, k)-binomial(n, k-1))^6);
-
from math import comb
def A382435(n): return (sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**6 for j in range((n>>1)+1))<<1)-1 # Chai Wah Wu, Mar 25 2025
A381676
a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^2.
Original entry on oeis.org
1, 1, 4, 17, 86, 472, 2752, 16753, 105394, 680366, 4484360, 30067160, 204508240, 1408057120, 9796738304, 68786005361, 486845236106, 3470187822754, 24891491746792, 179556655434382, 1301857088258836, 9482632068303296, 69361538748381824, 509303099950899352
Offset: 0
-
[ &+[Binomial(n, k)^2 * (Binomial(n, k) - (k gt 0 select Binomial(n, k-1) else 0)) : k in [0..n]] : n in [0..20] ]; // Vincenzo Librandi, Mar 27 2025
-
Table[Sum[Binomial[n,k]^2*(Binomial[n,k]-Binomial[n,k-1]),{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 27 2025 *)
-
a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^2);
A382443
a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^4.
Original entry on oeis.org
1, 1, 4, 65, 566, 10912, 164032, 3237313, 62253130, 1314421886, 28392213224, 639799858304, 14785604868256, 350615631856960, 8485316740880384, 209179475361783233, 5239271305444731698, 133100429387161703962, 3424142506153260211720, 89090362800169426107070
Offset: 0
-
[&+[Binomial(n, k)* (Binomial(n, k) - Binomial (n, k-1))^4: k in [0..n]]: n in [0..21]]; // Vincenzo Librandi, Mar 29 2025
-
Table[Sum[Binomial[n,k]*(Binomial[n,k]-Binomial[n,k-1])^4,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 29 2025 *)
-
a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^4);
A382446
a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^6.
Original entry on oeis.org
1, 1, 4, 257, 4286, 258952, 11816512, 632854273, 43732565914, 2637804065366, 207379028199080, 14568483339859880, 1205457271871693920, 95108827011788280160, 8187664948710535579904, 698818327346476962092801, 62477582066507173352034866, 5627626080883126186936773514
Offset: 0
-
[&+[Binomial(n, k)* (Binomial(n, k) - Binomial (n, k-1))^6: k in [0..n]]: n in [0..21]]; // Vincenzo Librandi, Mar 30 2025
-
Table[Sum[Binomial[n,k]*(Binomial[n,k]-Binomial[n,k-1])^6,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 30 2025 *)
-
a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^6);
Showing 1-5 of 5 results.