cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A357824 Total number A(n,k) of k-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 6, 3, 1, 1, 2, 9, 14, 10, 4, 1, 1, 2, 17, 36, 42, 20, 4, 1, 1, 2, 33, 98, 190, 132, 35, 5, 1, 1, 2, 65, 276, 882, 980, 429, 70, 5, 1, 1, 2, 129, 794, 4150, 7812, 5705, 1430, 126, 6, 1, 1, 2, 257, 2316, 19722, 65300, 78129, 33040, 4862, 252, 6
Offset: 0

Views

Author

Alois P. Heinz, Oct 14 2022

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,   1,    1,     1,       1,        1,         1, ...
  1,  1,   1,    1,     1,       1,        1,         1, ...
  2,  2,   2,    2,     2,       2,        2,         2, ...
  2,  3,   5,    9,    17,      33,       65,       129, ...
  3,  6,  14,   36,    98,     276,      794,      2316, ...
  3, 10,  42,  190,   882,    4150,    19722,     94510, ...
  4, 20, 132,  980,  7812,   65300,   562692,   4939220, ...
  4, 35, 429, 5705, 78129, 1083425, 15105729, 211106945, ...
		

Crossrefs

Rows n=1-5 give: A000012, A007395, A000051, A001550, A074511.
Main diagonal gives A357825.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    A:= (n, k)-> add(b(n, n-2*j)^k, j=0..n/2):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - 1, y + j], {j, {-1, 1}}]]];
    A[n_, k_] := Sum[b[n, n - 2*j]^k, { j, 0, n/2}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 18 2022, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..floor(n/2)} A008315(n,j)^k.
A(n,k) = Sum_{j=0..n} A120730(n,j)^k for k>=1, A(n,0) = A008619(n).

A382435 a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^6.

Original entry on oeis.org

1, 1, 3, 129, 1587, 39443, 1125383, 30211457, 1107074979, 36214609683, 1433494688871, 54495716261011, 2275005440977063, 95146470595975399, 4170974287982618639, 185640304224109725569, 8492643748223480148419, 395051289603660979274339, 18726850582009755291702599
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2025

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    a:= n-> 2*add(b(n, n-2*j)^6, j=0..n/2)-1:
    seq(a(n), n=0..18);  # Alois P. Heinz, Mar 25 2025
  • PARI
    a(n) = sum(k=0, n, (binomial(n, k)-binomial(n, k-1))^6);
    
  • Python
    from math import comb
    def A382435(n): return (sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**6 for j in range((n>>1)+1))<<1)-1 # Chai Wah Wu, Mar 25 2025

Formula

a(n) = Sum_{k=0..n} A080233(n,k)^6 = Sum_{k=0..n} A156644(n,k)^6.
a(n) = 2 * A382433(n) - 1.

A381676 a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^2.

Original entry on oeis.org

1, 1, 4, 17, 86, 472, 2752, 16753, 105394, 680366, 4484360, 30067160, 204508240, 1408057120, 9796738304, 68786005361, 486845236106, 3470187822754, 24891491746792, 179556655434382, 1301857088258836, 9482632068303296, 69361538748381824, 509303099950899352
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2025

Keywords

Crossrefs

Programs

  • Magma
    [ &+[Binomial(n, k)^2 * (Binomial(n, k) - (k gt 0 select Binomial(n, k-1) else 0)) : k in [0..n]] : n in [0..20] ]; // Vincenzo Librandi, Mar 27 2025
  • Mathematica
    Table[Sum[Binomial[n,k]^2*(Binomial[n,k]-Binomial[n,k-1]),{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 27 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^2);
    

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2 * ( binomial(n,k) - binomial(n,k-1) ).
a(n) ~ 2^(3*n+3) / (Pi * 3^(3/2) * n^2). - Vaclav Kotesovec, Mar 26 2025

A382443 a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^4.

Original entry on oeis.org

1, 1, 4, 65, 566, 10912, 164032, 3237313, 62253130, 1314421886, 28392213224, 639799858304, 14785604868256, 350615631856960, 8485316740880384, 209179475361783233, 5239271305444731698, 133100429387161703962, 3424142506153260211720, 89090362800169426107070
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n, k)* (Binomial(n, k) - Binomial (n, k-1))^4: k in [0..n]]: n in [0..21]]; // Vincenzo Librandi, Mar 29 2025
  • Mathematica
    Table[Sum[Binomial[n,k]*(Binomial[n,k]-Binomial[n,k-1])^4,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 29 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^4);
    

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2 * ( binomial(n,k) - binomial(n,k-1) )^3.
a(n) ~ 3 * 2^(5*n+6) / (Pi^2 * 5^(5/2) * n^4). - Vaclav Kotesovec, Mar 26 2025

A382446 a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^6.

Original entry on oeis.org

1, 1, 4, 257, 4286, 258952, 11816512, 632854273, 43732565914, 2637804065366, 207379028199080, 14568483339859880, 1205457271871693920, 95108827011788280160, 8187664948710535579904, 698818327346476962092801, 62477582066507173352034866, 5627626080883126186936773514
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n, k)* (Binomial(n, k) - Binomial (n, k-1))^6: k in [0..n]]: n in [0..21]]; // Vincenzo Librandi, Mar 30 2025
  • Mathematica
    Table[Sum[Binomial[n,k]*(Binomial[n,k]-Binomial[n,k-1])^6,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^6);
    

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2 * ( binomial(n,k) - binomial(n,k-1) )^5.
a(n) ~ 15 * 2^(7*n+9) / (Pi^3 * 7^(7/2) * n^6). - Vaclav Kotesovec, Mar 26 2025
Showing 1-5 of 5 results.