cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A382612 a(n) = n^3 * (n^2 - n + 1).

Original entry on oeis.org

0, 1, 24, 189, 832, 2625, 6696, 14749, 29184, 53217, 91000, 147741, 229824, 344929, 502152, 712125, 987136, 1341249, 1790424, 2352637, 3048000, 3898881, 4930024, 6168669, 7644672, 9390625, 11441976, 13837149, 16617664, 19828257, 23517000, 27735421, 32538624, 37985409, 44138392, 51064125, 58833216, 67520449, 77204904, 87970077, 99904000, 113099361, 127653624
Offset: 0

Views

Author

Wesley Ivan Hurt, Mar 31 2025

Keywords

Comments

Product of the entries in the corners of an n X n square array with elements 1..n^2 listed in increasing order by rows (see example).

Examples

			                                                        [1   2  3  4  5]
                                        [1   2  3  4]   [6   7  8  9 10]
                              [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                     [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
             [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
  ------------------------------------------------------------------------
    n         1        2         3            4                 5
  ------------------------------------------------------------------------
              1     1*2*3*4   1*3*7*9     1*4*13*16         1*5*21*25
  ------------------------------------------------------------------------
    a(n)      1       24        189          832               2625
		

Crossrefs

Cf. A088020 (product of all entries).
Cf. A382532 (product along main antidiagonal).
Cf. A382620 (product along border).

Programs

  • Magma
    [n^3*(n^2 - n + 1) : n in [0..50]]; // Wesley Ivan Hurt, Apr 15 2025
  • Mathematica
    Table[n^3 (n^2 - n + 1), {n, 0, 60}]

Formula

G.f.: x*(1+18*x+60*x^2+38*x^3+3*x^4)/(x-1)^6. - R. J. Mathar, Apr 02 2025
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Wesley Ivan Hurt, Apr 15 2025

A382620 a(n) = n^(2*n-4) * (n!)^2 * (n^2)! * Pochhammer(1+1/n, n-1) / ((n^2-n+1) * (n^2-n)!).

Original entry on oeis.org

1, 24, 72576, 4528742400, 2423748096000000, 6787796602812825600000, 72775351435975459999580160000, 2410818176289650624878632291532800000, 211160088068074747246458003999015567360000000, 43450506124990177923906533235556142284800000000000000, 19145311724106592586650799558102522667408683773722624000000000
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 01 2025

Keywords

Comments

Product of the entries on the border of an n X n square array with elements 1..n^2 listed in increasing order by rows.

Examples

			                                                        [1   2  3  4  5]
                                        [1   2  3  4]   [6   7  8  9 10]
                              [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                     [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
             [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
  ------------------------------------------------------------------------
    n         1        2         3            4                 5
  ------------------------------------------------------------------------
    a(n)      1        24      72576      4528742400    2423748096000000
		

Crossrefs

Programs

  • Mathematica
    Table[n^(2n - 4)*(n!)^2*(n^2)!*Pochhammer[1 + 1/n, n - 1]/((n^2 - n + 1)*(n^2 - n)!), {n, 12}]

Formula

a(n) ~ 2^(3/2) * Pi^(3/2) * n^(7*n - 11/2) / exp(3*n + 1/2). - Vaclav Kotesovec, Apr 01 2025

A382597 a(n) = Product_{i=1..n} 1 - i + n*(n - i + 1) - (n - 2*i + 1)*((n - i + 1) mod 2).

Original entry on oeis.org

1, 1, 8, 105, 3840, 181545, 15814656, 1635491025, 261144576000, 47396578806225, 12046266925056000, 3390530144534798265, 1256223498048110592000, 506594307608708171477625, 257699484814807738928332800, 140934799049120316306629726625, 94240120920042785192632469422080
Offset: 0

Views

Author

Stefano Spezia, Mar 31 2025

Keywords

Comments

a(n) is the product of the elements of the main antidiagonal of the n X n square matrix M(n) formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern (see A317614).
Except for n = 0, 2, and 6, a(n) has trailing zeros iff n is even.

Examples

			a(4) = 3840:
   1,  2,  3,  4;
   8,  7,  6,  5;
   9, 10, 11, 12;
  16, 15, 14, 13.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Product[1-i+n(n-i+1)-(n-2i+1)Mod[n-i+1,2],{i,n}]; Array[a,17,0]
Showing 1-3 of 3 results.