cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382992 Number of compositions of n that have at least 1 part equal to 1 and any part 1 at position k can be k different colors.

Original entry on oeis.org

0, 1, 2, 9, 38, 190, 1105, 7465, 57808, 505924, 4940320, 53248819, 627848796, 8037734786, 111017325240, 1645384681388, 26044845197271, 438499277778649, 7824114643729925, 147476551001252541, 2928074880767250057, 61078483577649281698, 1335438738400978500931
Offset: 0

Views

Author

John Tyler Rascoe, Apr 11 2025

Keywords

Examples

			a(3) = 9 counts: (2, 1_a), (2, 1_b), (1_a, 2), (1_a, 1_a, 1_a), (1_a, 1_a, 1_b), (1_a, 1_a, 1_c), (1_a, 1_b, 1_a), (1_a, 1_b, 1_b), (1_a, 1_b, 1_c).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, add(
          b(n-j, i+1, `if`(j=1, 1, t))*`if`(j=1, i, 1), j=1..n))
        end:
    a:= n-> b(n, 1, 0):
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 23 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(-x^2/(1-x-x^2) + sum(i=1,N, prod(j=1,i, j*x + x^2/(1-x))))}
    A_x(30)

Formula

G.f.: -x^2/(1-x-x^2) + Sum_{i>0} Product_{j=1..i} ( j*x + x^2/(1-x) ).
a(n) = A382991(n) - A000045(n-1).

Extensions

Edited by Alois P. Heinz, Apr 23 2025