cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A112019 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k)^2.

Original entry on oeis.org

1, 5, 55, 749, 11251, 178835, 2949115, 49906925, 860905315, 15071939255, 266982872905, 4774722189275, 86070844191775, 1561948324845095, 28507384046515555, 522867506128197869, 9631571375362268515, 178094411589895650815, 3304192479145474141741, 61487420580006795749999
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Comments

Diagonal of rational function 1/(1 - x - y - z - x*y + x*z + x*y*z). - Gheorghe Coserea, Jul 01 2018
Diagonal of the rational function 1 / ((1-x)*(1-y)*(1-z) - z). - Seiichi Manyama, Apr 30 2025

Crossrefs

Programs

  • Maple
    seq(add((multinomial(n+k,n-k,k,k))*binomial(n+k,k),k=0..n),n=0..19); # Zerinvary Lajos, Oct 18 2006
    ogf := hypergeom([1/12,5/12],[1], -1728*(x^3+5*x^2+39*x-2)*x^4 / (x^4+4*x^3+30*x^2-20*x+1)^3 ) / (x^4+4*x^3+30*x^2-20*x+1)^(1/4);
    series(ogf, x=0, 30); # Mark van Hoeij, Jan 22 2013
  • Mathematica
    Table[HypergeometricPFQ[{-n, 1 + n, 1 + n}, {1, 1}, -1], {n, 0, 20}] (* Olivier Gérard, Apr 23 2009 *)
    Table[Sum[Binomial[n,k]*Binomial[n+k,k]^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 04 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*binomial(n+k,k)^2); \\ Michel Marcus, Mar 09 2016

Formula

a(n) = 3F2( {-n, 1 + n, 1 + n} ; {1, 1} )(-1). - Olivier Gérard, Apr 23 2009
a(n) ~ (1+r)^(4*n+5/2)/r^(3*n+5/2)/(2*Pi*n)*sqrt((1-r)/(3-r)), where r is positive real root of the equation (1-r)*(1+r)^2=r^3, r = 1/6*((44-3*sqrt(177))^(1/3)+(44+3*sqrt(177))^(1/3)-1) = 0.82948354095849... - Vaclav Kotesovec, Nov 04 2012
Recurrence: 2*n^2*(59*n - 83)*a(n) = (2301*n^3 - 5538*n^2 + 3797*n - 800)*a(n-1) + 5*(59*n^3 - 201*n^2 + 213*n - 64)*a(n-2) + (59*n - 24)*(n-2)^2*a(n-3). - Vaclav Kotesovec, Nov 04 2012
G.f. y=A(x) satisfies: 0 = x*(5*x + 8)*(x^3 + 5*x^2 + 39*x - 2)*y'' + (15*x^4 + 82*x^3 + 315*x^2 + 624*x - 16)*y' + (5*x^3 + 21*x^2 + 80)*y. - Gheorghe Coserea, Jul 01 2018

A383538 a(n) = Sum_{k=0..floor(n/4)} binomial(n+k,k)^2 * binomial(n-3*k,k).

Original entry on oeis.org

1, 1, 1, 1, 26, 73, 148, 257, 2431, 9676, 26984, 61993, 332762, 1487886, 5029676, 13986049, 57394823, 253491517, 953613991, 3032424076, 11249004334, 47032861778, 185321607072, 645015386921, 2340940921276, 9321743657318, 37091865274327, 136525692171310
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2025

Keywords

Comments

Diagonal of the rational function 1 / ((1-x)*(1-y)*(1-z) - z^4).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)^2*binomial(n-3*k, k));
Showing 1-2 of 2 results.