A383570 Number of transversals in pine Latin squares of order 4n.
8, 384, 76032, 62881792
Offset: 1
Examples
For order N=8 pine Latin square 0 1 2 3 4 5 6 7 1 2 3 0 7 4 5 6 2 3 0 1 6 7 4 5 3 0 1 2 5 6 7 4 4 5 6 7 0 1 2 3 5 6 7 4 3 0 1 2 6 7 4 5 2 3 0 1 7 4 5 6 1 2 3 0 has 384 transversals. . For order N=10 pine Latin square 0 1 2 3 4 5 6 7 8 9 1 2 3 4 0 9 5 6 7 8 2 3 4 0 1 8 9 5 6 7 3 4 0 1 2 7 8 9 5 6 4 0 1 2 3 6 7 8 9 5 5 6 7 8 9 0 1 2 3 4 6 7 8 9 5 4 0 1 2 3 7 8 9 5 6 3 4 0 1 2 8 9 5 6 7 2 3 4 0 1 9 5 6 7 8 1 2 3 4 0 has no transversals. . For order N=12 pine Latin square 0 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 0 11 6 7 8 9 10 2 3 4 5 0 1 10 11 6 7 8 9 3 4 5 0 1 2 9 10 11 6 7 8 4 5 0 1 2 3 8 9 10 11 6 7 5 0 1 2 3 4 7 8 9 10 11 6 6 7 8 9 10 11 0 1 2 3 4 5 7 8 9 10 11 6 5 0 1 2 3 4 8 9 10 11 6 7 4 5 0 1 2 3 9 10 11 6 7 8 3 4 5 0 1 2 10 11 6 7 8 9 2 3 4 5 0 1 11 6 7 8 9 10 1 2 3 4 5 0 has 76032 transversals.
Links
- Richard Bean, Critical sets in Latin squares and associated structures, Ph.D. Thesis, The University of Queensland, 2001.
- Eduard I. Vatutin, About the properties of pine Latin squares (in Russian).
- Eduard I. Vatutin, Proving list (examples).
- Index entries for sequences related to Latin squares and rectangles.
Comments