cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A383597 Expansion of 1/( (1-x)^2 * (1-10*x) )^(1/3).

Original entry on oeis.org

1, 4, 25, 190, 1570, 13552, 120178, 1085620, 9940345, 91962460, 857750233, 8053389142, 76026759760, 721017894640, 6864725124520, 65578937628304, 628320730656586, 6035594205744520, 58110220504754650, 560624083417180300, 5418599393597801020, 52459116546784350880
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    I:=[4,25]; [1] cat [n le 2 select I[n] else ((11*n-7)*Self(n-1) - 10*(n-1) *Self(n-2))/n : n in [1..30]]; // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[(-9)^k *Binomial[-1/3,k]* Binomial[n, k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-9)^k*binomial(-1/3, k)*binomial(n, k));
    

Formula

a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n,k).
n*a(n) = (11*n-7)*a(n-1) - 10*(n-1)*a(n-2) for n > 1.
a(n) ~ 10^(n + 2/3) / (Gamma(1/3) * 3^(4/3) * n^(2/3)). - Vaclav Kotesovec, May 02 2025
a(n) = hypergeom([1/3, -n], [1], -9). - Stefano Spezia, May 04 2025

A383605 Expansion of 1/( (1-x) * (1-x-9*x^2)^2 )^(1/3).

Original entry on oeis.org

1, 1, 7, 13, 64, 160, 661, 1927, 7288, 23044, 83413, 275479, 976198, 3301462, 11584861, 39703783, 138747637, 479200129, 1672353256, 5803085008, 20251472416, 70486033288, 246114881956, 858397066324, 2999541427177, 10477699520329, 36642516789607, 128146441442989
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/( (1-x) * (1-x-9*x^2)^2 )^(1/3))); // Vincenzo Librandi, May 06 2025
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x-9*x^2)^2)^(1/3),{x,0,27}],x] (* Stefano Spezia, May 02 2025 *)
    Table[Sum[(-9)^k*Binomial[-2/3,k]*Binomial[n-k,k],{k,0,Floor[n/2]}],{n,0,35}] (* Vincenzo Librandi, May 06 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, (-9)^k*binomial(-2/3, k)*binomial(n-k, k));
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (-9)^k * binomial(-2/3,k) * binomial(n-k,k).
a(n) ~ Gamma(1/3) * (1 + sqrt(37))^(n + 4/3) / (Pi * 3^(1/6) * 37^(1/3) * n^(1/3) * 2^(n + 7/3)). - Vaclav Kotesovec, May 02 2025

A383606 Expansion of 1/( (1-x) * (1-x-9*x^3)^2 )^(1/3).

Original entry on oeis.org

1, 1, 1, 7, 13, 19, 70, 166, 307, 853, 2164, 4600, 11491, 29137, 66808, 161692, 403843, 961129, 2316238, 5715742, 13831219, 33450073, 82013692, 199820584, 485389276, 1187152906, 2900334583, 7069398325, 17283884710, 42278723290, 103291322056, 252668924536
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/( (1-x) * (1-x-9*x^3)^2 )^(1/3))); // Vincenzo Librandi, May 06 2025
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x-9*x^3)^2)^(1/3),{x,0,31}],x] (* Stefano Spezia, May 02 2025 *)
    Table[Sum[(-9)^k*Binomial[-2/3,k]*Binomial[n-2*k,k],{k,0,Floor[n/3]}],{n,0,35}] (* Vincenzo Librandi, May 06 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, (-9)^k*binomial(-2/3, k)*binomial(n-2*k, k));
    

Formula

a(n) = Sum_{k=0..floor(n/3)} (-9)^k * binomial(-2/3,k) * binomial(n-2*k,k).

A383610 Expansion of 1/( (1-x^2) * (1-x^2-9*x)^2 )^(1/3).

Original entry on oeis.org

1, 6, 46, 372, 3106, 26406, 227179, 1970952, 17206552, 150940848, 1329193288, 11741662152, 103992267826, 923052335316, 8208568670644, 73116321077784, 652195543067596, 5824848557238228, 52080340709333998, 466116121318516872, 4175438344430632696
Offset: 0

Views

Author

Seiichi Manyama, May 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-9)^(n-2*k)*binomial(-2/3, n-2*k)*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (-9)^(n-2*k) * binomial(-2/3,n-2*k) * binomial(n-k,k).
a(n) ~ Gamma(1/3) * (9 + sqrt(85))^(n+1) / (Pi * 3^(1/6) * 85^(1/3) * n^(1/3) * 2^(n+2)). - Vaclav Kotesovec, May 03 2025

A383611 Expansion of 1/( (1-x^3) * (1-x^3-9*x)^2 )^(1/3).

Original entry on oeis.org

1, 6, 45, 361, 2982, 25083, 213499, 1832508, 15827103, 137356597, 1196642427, 10457750151, 91630781245, 804632867643, 7078961780064, 62380210284379, 550478616300900, 4863816606663882, 43022548851457447, 380930792260360182, 3375853250109410583
Offset: 0

Views

Author

Seiichi Manyama, May 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-9)^(n-3*k)*binomial(-2/3, n-3*k)*binomial(n-2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (-9)^(n-3*k) * binomial(-2/3,n-3*k) * binomial(n-2*k,k).
Showing 1-5 of 5 results.