cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A208977 Self-convolution square-root of A005810, where A005810(n) = binomial(4*n,n).

Original entry on oeis.org

1, 2, 12, 86, 666, 5388, 44832, 380424, 3275172, 28512248, 250413856, 2215112886, 19711078686, 176276723508, 1583186541144, 14271487891512, 129063176166570, 1170480053359908, 10641805703955624, 96970507481607972, 885397365149468076, 8098908925136867112
Offset: 0

Views

Author

Paul D. Hanna, Mar 03 2012

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 12*x^2 + 86*x^3 + 666*x^4 + 5388*x^5 +...
The square of the g.f. equals the g.f. of A005810:
A(x)^2 = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + 15504*x^5 +...
The g.f. of A002293 is G(x) = 1 + x*G(x)^4:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          (binomial(4*n, n)-add(a(j)*a(n-j), j=1..n-1))/2)
        end:
    seq(a(n), n=0..21);  # Alois P. Heinz, Jun 06 2025
  • Mathematica
    nmax = 20; self = ConstantArray[0, nmax + 1]; self[[1]] = 1; self[[2]] = 2; Do[self[[k+1]] = (Binomial[4*k, k] - Sum[self[[j+1]]*self[[k-j+1]], {j, 1, k-1}]) / (2*self[[1]]);, {k, 2, nmax}]; self (* Vaclav Kotesovec, Jun 06 2025 *)
  • PARI
    {a(n)=polcoeff(sum(k=0,n,binomial(4*k,k)*x^k +x*O(x^n))^(1/2),n)}
    for(n=0,41,print1(a(n),", "))

Formula

G.f.: A(x) = sqrt( G(x)/(4 - 3*G(x)) ) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. [From a formula by Mark van Hoeij in A005810]
From Vaclav Kotesovec, Jun 06 2025: (Start)
Recurrence: 81*(n-1)*n*(2*n - 3)*(3*n - 2)*(3*n - 1)*a(n) = 24*(n-1)*(1152*n^4 - 4608*n^3 + 6698*n^2 - 4180*n + 915)*a(n-1) - 16*(2*n - 1)*(8*n - 15)*(8*n - 13)*(8*n - 11)*(8*n - 9)*a(n-2).
a(n) ~ 2^(8*n + 1/4) / (Gamma(1/4) * n^(3/4) * 3^(3*n + 1/4)) * (1 - Gamma(1/4)^2 / (24*Pi*sqrt(3*n))). (End)

A384695 Self-convolution square-root of A169961, where A169961(n) = binomial(12*n,n).

Original entry on oeis.org

1, 6, 120, 2850, 72990, 1950816, 53594508, 1500996420, 42639593040, 1224606404670, 35477155257720, 1035058071490152, 30375294227227530, 895810786837337880, 26530164526824124560, 788575111385154710700, 23513904388397505712014, 703104985574123730695460, 21076207836773295148694400
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; self = ConstantArray[0, nmax + 1]; self[[1]] = 1; self[[2]] = 6; Do[self[[k+1]] = (Binomial[12*k, k] - Sum[self[[j+1]]*self[[k - j + 1]], {j, 1, k-1}]) / (2*self[[1]]);, {k, 2, nmax}]; self

Formula

a(n) ~ 12^(12*n + 1/4) / (2^(1/4) * Gamma(1/4) * 11^(11*n + 1/4) * n^(3/4)).
From Seiichi Manyama, Aug 16 2025: (Start)
Sum_{k=0..n} a(k) * a(n-k) = A169961(n).
G.f.: 1/sqrt(1 - 12*x*g^11) where g = 1+x*g^12.
G.f.: sqrt( g/(12-11*g) ) where g = 1+x*g^12. (End)

A387092 Expansion of B(x)/sqrt(1 + 8*(B(x)-1)/9), where B(x) is the g.f. of A169958.

Original entry on oeis.org

1, 5, 73, 1273, 23993, 472483, 9570669, 197720403, 4144499289, 87850211830, 1878702271039, 40466493877812, 876838997392189, 19095109351916182, 417622272948538767, 9167498552774475792, 201891862924784199321, 4458815817948146064915
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Sum[Binomial[9*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 8*(Sum[Binomial[9*n, n]*x^n, {n, 0, nmax}] - 1)/9], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)

Formula

Sum_{k=0..n} a(k) * a(n-k) = A387091(n).
G.f.: 1/sqrt(1 - x*g^7*(9+g)) where g = 1+x*g^9 is the g.f. of A062994.
G.f.: g/sqrt(9-8*g) where g = 1+x*g^9 is the g.f. of A062994.
a(n) ~ 3^(18*n + 3/2) / (Gamma(1/4) * n^(3/4) * 2^(24*n + 5/2)). - Vaclav Kotesovec, Aug 20 2025
Showing 1-3 of 3 results.