A383965
Self-convolution square-root of A004381, where A004381(n) = binomial(8*n,n).
Original entry on oeis.org
1, 4, 52, 804, 13412, 233548, 4180932, 76307228, 1412731844, 26443784224, 499310856828, 9494966722696, 181620437132820, 3491268491768400, 67396227598309788, 1305787014634864584, 25380012805871145604, 494684878753394992992, 9665968233663380580256, 189289570996914582016788
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
(binomial(8*n, n)-add(a(j)*a(n-j), j=1..n-1))/2)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jun 06 2025
-
nmax = 20; self = ConstantArray[0, nmax + 1]; self[[1]] = 1; self[[2]] = 4; Do[self[[k+1]] = (Binomial[8*k, k] - Sum[self[[j+1]]*self[[k - j + 1]], {j, 1, k-1}]) / (2*self[[1]]);, {k, 2, nmax}]; self
A385719
Expansion of B(x)/sqrt(1 + 2*(B(x)-1)/3), where B(x) is the g.f. of A004355.
Original entry on oeis.org
1, 4, 38, 428, 5204, 66104, 863840, 11515308, 155779966, 2131436392, 29426804398, 409254436452, 5726378247412, 80535621269208, 1137609359823936, 16130112288879248, 229462608491483364, 3273749607191060480, 46826932120849617128, 671341041479214814160, 9644654058165119642624
Offset: 0
-
nmax = 20; CoefficientList[Series[Sum[Binomial[6*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 2*(Sum[Binomial[6*n, n]*x^n, {n, 0, nmax}] - 1)/3], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)
A387084
Expansion of B(x)/sqrt(1 + 4*(B(x)-1)/5), where B(x) is the g.f. of A001449.
Original entry on oeis.org
1, 3, 23, 211, 2095, 21752, 232439, 2534182, 28041295, 313833025, 3544160216, 40318629754, 461455158383, 5308453068900, 61333295856750, 711305543582150, 8276351877367663, 96576953297406377, 1129842469637643485, 13248082583624602575, 155660344852055352760
Offset: 0
-
nmax = 25; CoefficientList[Series[Sum[Binomial[5*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 4*(Sum[Binomial[5*n, n]*x^n, {n, 0, nmax}] - 1)/5], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)
A387086
Expansion of B(x)/sqrt(1 + 2*(B(x)-1)), where B(x) is the g.f. of A000984.
Original entry on oeis.org
1, 0, 2, 4, 16, 52, 188, 672, 2458, 9052, 33648, 125864, 473500, 1789632, 6791528, 25863568, 98796096, 378411332, 1452886052, 5590262688, 21551271916, 83228809640, 321933018272, 1247062996304, 4837152438556, 18785529571200, 73037938668632, 284268423472432
Offset: 0
-
nmax = 30; CoefficientList[Series[Sum[Binomial[2*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 2*(Sum[Binomial[2*n, n]*x^n, {n, 0, nmax}] - 1)], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(4*x-1+2*sqrt(1-4*x)))
A384695
Self-convolution square-root of A169961, where A169961(n) = binomial(12*n,n).
Original entry on oeis.org
1, 6, 120, 2850, 72990, 1950816, 53594508, 1500996420, 42639593040, 1224606404670, 35477155257720, 1035058071490152, 30375294227227530, 895810786837337880, 26530164526824124560, 788575111385154710700, 23513904388397505712014, 703104985574123730695460, 21076207836773295148694400
Offset: 0
-
nmax = 20; self = ConstantArray[0, nmax + 1]; self[[1]] = 1; self[[2]] = 6; Do[self[[k+1]] = (Binomial[12*k, k] - Sum[self[[j+1]]*self[[k - j + 1]], {j, 1, k-1}]) / (2*self[[1]]);, {k, 2, nmax}]; self
Showing 1-5 of 5 results.
Comments