A383968 Number of distinct subsets S of [1..n] such that for all 1 <= k <= n, there exists two elements x,y in S (not necessarily distinct) such that x+y = 2k.
1, 1, 2, 3, 5, 9, 17, 30, 58, 107, 205, 392, 768, 1466, 2883, 5597, 11038, 21572, 42675, 83711, 166371, 327893, 651199, 1288480, 2564032, 5082878, 10127472, 20115845, 40104636, 79781149, 159174500, 316962113, 632716744, 1261189166, 2518287361, 5023170116, 10034132101, 20025033970
Offset: 1
Keywords
Examples
For n = 5, there are 5 sets S that satisfy the said conditions: {1, 2, 3, 4, 5}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5} and {1, 3, 5}.
Links
- David A. Corneth, PARI program
- Sean A. Irvine, Java program (github)
Programs
-
Python
def a(n): if n == 1: return 1 c,t = 0, set(k << 1 for k in range(1, n+1)) for i in range(1 << (n-2), 1 << n): s = [j+1 for j in range(n) if (i >> j) & 1] if s[0] == 1 and s[-1] == n: ss = set(x + y for x in s for y in s if x & 1 == y & 1) if t.issubset(ss): c += 1 return c # DarĂo Clavijo, May 23 2025
Extensions
a(23)-a(38) from Sean A. Irvine, May 21 2025
Comments