A384121 Array read by antidiagonals: T(n,m) is the number of dominating sets in the n X m rook complement graph.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 39, 39, 1, 1, 1, 1, 183, 421, 183, 1, 1, 1, 1, 833, 3825, 3825, 833, 1, 1, 1, 1, 3629, 32047, 64727, 32047, 3629, 1, 1, 1, 1, 15291, 260355, 1046425, 1046425, 260355, 15291, 1, 1, 1, 1, 63051, 2092909, 16771879, 33548731, 16771879, 2092909, 63051, 1, 1
Offset: 0
Examples
Array begins: =============================================================== n\m | 0 1 2 3 4 5 6 ... ----+---------------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 ... 2 | 1 1 9 39 183 833 3629 ... 3 | 1 1 39 421 3825 32047 260355 ... 4 | 1 1 183 3825 64727 1046425 16771879 ... 5 | 1 1 833 32047 1046425 33548731 1073727713 ... 6 | 1 1 3629 260355 16771879 1073727713 68719441881 ... 7 | 1 1 15291 2092909 268422785 34359704907 4398046428559 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
- Eric Weisstein's World of Mathematics, Dominating Set.
- Eric Weisstein's World of Mathematics, Rook Complement Graph.
Crossrefs
Programs
-
PARI
T(n,m) = if(n<=1 || m<=1, 1, 2^(n*m) - n*(2^m-2) - m*(2^n-2) + n*m - n*m*(2^(m-1)-1)*(2^(n-1)-1) + n*(n-1)*m*(m-1)/2 - 1)
Formula
T(n,m) = 2^(n*m) - n*(2^m-2) - m*(2^n-2) + n*m - n*m*(2^(m-1)-1)*(2^(n-1)-1) + n*(n-1)*m*(m-1)/2 - 1 for n > 1, m > 1.
T(n,m) = T(m,n).
Comments