cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384585 a(n) = 6 * (4*n)! / ((n+1)! * (3*n+1)!).

Original entry on oeis.org

6, 3, 8, 33, 168, 969, 6072, 40365, 280488, 2017356, 14914848, 112784399, 869046168, 6803716710, 53997506640, 433647466245, 3518801467560, 28815074239908, 237887596740192, 1978246301709540, 16558857808956320, 139428557033056785, 1180350813375438840, 10041660963789578955
Offset: 0

Views

Author

Karol A. Penson, Jun 04 2025

Keywords

Comments

Since a(1) < a(0) the sequence is not growing monotonically with n.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 6-3*n,
          8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)/(3*(3*n-1)*(3*n+1)*(n+1)))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jun 04 2025
  • Mathematica
    a[n_]:=6*(4*n)!/((n+1)!*(3*n+1)!); Array[a,24,0] (* Stefano Spezia, Jun 04 2025 *)

Formula

O.g.f.: 6*hypergeom([1/4, 1/2, 3/4, 1], [2/3, 4/3, 2], (256*z)/27).
E.g.f.: 6*hypergeom([1/4, 1/2, 3/4], [2/3, 4/3, 2], (256*z)/27).
O.g.f. = h(z) satisfies algebraic equation of order 4: -6 - 39*z + 4096*z^2 + (1 - 12*z - 768*z^2)*h(z) - 3*z*(2*z - 1)*h(z)^2 + 3*z^2*h(z)^3 + z^3*h(z)^4 = 0.
a(n) = Integral_{x=0..256/27} x^n*W(x)*dx, where W(x) = W1(x)+W2(x)+W3(x), with
W1(x) = 4*sqrt(2)*hypergeom([-3/4, -1/12, 7/12], [1/2, 3/4], (27*x)/256)/(Pi*x^(3/4)),
W2(x) = -3*hypergeom([-1/2, 1/6, 5/6], [3/4, 5/4], (27*x)/256)/(Pi*sqrt(x)), and
W3(x) = -3*sqrt(2)*hypergeom([-1/4, 5/12, 13/12], [5/4, 3/2], (27*x)/256)/(8*Pi*x^(1/4)).
This integral representation is unique as it is the solution of the Hausdorff power moment problem of the function W(x). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 256/27. Therefore a(n) is a positive definite sequence.