A384588 Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384586.
0, 3, 8, 8, 8, 7, 9, 0, 8, 5, 1, 5, 0, 0, 5, 3, 8, 4, 2, 7, 2, 4, 3, 8, 1, 6, 8, 1, 5, 6, 2, 0, 9, 9, 1, 3, 7, 2, 2, 3, 0, 7, 1, 9, 1, 3, 4, 8, 2, 7, 6, 9, 0, 2, 1, 8, 1, 6, 3, 5, 2, 9, 2, 4, 0, 4, 5, 2, 5, 7, 6, 2, 9, 1, 0, 1, 7, 6, 9, 8, 0, 9, 9, 9, 8, 4, 3, 3
Offset: 0
Examples
0.038887908515005384272438168156209913722307191348276...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Table 25.9, n = 4.
- A.H.M. Smeets, Abscissas and weight factors for Laguerre integration for some larger degrees.
- Eric Weisstein's World of Mathematics, Laguerre-Gauss Quadrature.
- Index entries for algebraic numbers, degree 4.
Crossrefs
There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
Programs
-
Mathematica
First[RealDigits[Root[1990656*#^4 - 1990656*#^3 + 504576*#^2 - 16960*# + 9 &, 2], 10, 100, -1]] (* Paolo Xausa, Jun 26 2025 *)
-
PARI
solve(x = 0.1, 0.04, 1990656*x^4 - 1990656*x^3 + 504576*x^2 - 16960*x + 9)
Formula
Second smallest root of 1990656*x^4 - 1990656*x^3 + 504576*x^2 - 16960*x + 9 = 0.