cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A384589 Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384587.

Original entry on oeis.org

0, 0, 0, 5, 3, 9, 2, 9, 4, 7, 0, 5, 5, 6, 1, 3, 2, 7, 4, 5, 0, 1, 0, 3, 7, 9, 0, 5, 6, 7, 6, 2, 0, 5, 9, 3, 2, 1, 2, 2, 7, 7, 2, 5, 6, 9, 6, 6, 4, 3, 3, 2, 4, 4, 0, 8, 5, 4, 6, 6, 4, 9, 9, 4, 7, 7, 9, 0, 1, 0, 9, 1, 7, 5, 6, 9, 3, 7, 2, 3, 0, 2, 7, 8, 5, 7, 9, 1, 1, 6
Offset: 0

Views

Author

A.H.M. Smeets, Jun 14 2025

Keywords

Examples

			0.00053929470556132745010379056762059321227725696643324...
		

Crossrefs

Cf. A384590.
There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
4 | A384280, A384281, A384586, A384587 | A384466, A384467, A384588, this sequence

Programs

  • Mathematica
    First[RealDigits[Root[1990656*#^4 - 1990656*#^3 + 504576*#^2 - 16960*# + 9 &, 1], 10, 100, -1]] (* Paolo Xausa, Jun 26 2025 *)
  • PARI
    solve(x = 0.0, 0.01, 1990656*x^4 - 1990656*x^3 + 504576*x^2 - 16960*x + 9)

Formula

Smallest root of 1990656*x^4 - 1990656*x^3 + 504576*x^2 - 16960*x + 9 = 0.

A384277 Decimal expansion of the smallest zero of the Laguerre polynomial of degree 3.

Original entry on oeis.org

4, 1, 5, 7, 7, 4, 5, 5, 6, 7, 8, 3, 4, 7, 9, 0, 8, 3, 3, 1, 1, 5, 3, 3, 8, 7, 3, 1, 2, 8, 2, 7, 4, 4, 7, 3, 5, 4, 6, 6, 1, 7, 4, 1, 2, 6, 9, 3, 1, 1, 8, 4, 6, 5, 0, 9, 3, 9, 6, 5, 9, 5, 4, 3, 2, 2, 3, 2, 5, 0, 1, 9, 9, 3, 6, 9, 1, 3, 3, 1, 4, 9, 5, 7, 1, 9, 6
Offset: 0

Views

Author

A.H.M. Smeets, May 24 2025

Keywords

Examples

			0.41577455678347908331153387312827447354661741269311...
		

Crossrefs

There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
3 | this sequence, A384278, A384279 | A384463, A384464, A384465

Programs

  • Mathematica
    First[RealDigits[Root[LaguerreL[3, #] &, 1], 10, 100]] (* Paolo Xausa, Jun 05 2025 *)

Formula

Smallest root of x^3 - 9 x^2 + 18 x - 6 = 0.

A384279 Decimal expansion of the largest zero of the Laguerre polynomial of degree 3.

Original entry on oeis.org

6, 2, 8, 9, 9, 4, 5, 0, 8, 2, 9, 3, 7, 4, 7, 9, 1, 9, 6, 8, 6, 6, 4, 1, 5, 7, 6, 5, 5, 1, 2, 1, 3, 1, 6, 5, 7, 4, 9, 3, 5, 2, 0, 8, 6, 6, 2, 4, 6, 6, 0, 0, 7, 0, 0, 8, 7, 0, 8, 3, 2, 7, 9, 7, 5, 9, 3, 6, 4, 4, 5, 2, 8, 7, 2, 5, 9, 2, 0, 2, 3, 8, 4, 7, 9, 6, 1
Offset: 1

Views

Author

A.H.M. Smeets, May 26 2025

Keywords

Examples

			6.28994508293747919686641576551213165749352086624660...
		

Crossrefs

Cf. A384590.
There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
3 | A384277, A384278, this sequence | A384463, A384464, A384465

Programs

  • Mathematica
    First[RealDigits[Root[LaguerreL[3, #] &, 3], 10, 100]] (* Paolo Xausa, Jun 05 2025 *)

Formula

largest root of x^3 - 9 x^2 + 18 x - 6 = 0.

A384278 Decimal expansion of the second smallest zero of the Laguerre polynomial of degree 3.

Original entry on oeis.org

2, 2, 9, 4, 2, 8, 0, 3, 6, 0, 2, 7, 9, 0, 4, 1, 7, 1, 9, 8, 2, 2, 0, 5, 0, 3, 6, 1, 3, 5, 9, 5, 9, 3, 8, 6, 8, 9, 5, 9, 8, 6, 1, 7, 2, 1, 0, 6, 0, 2, 8, 0, 8, 3, 4, 0, 3, 5, 2, 0, 1, 2, 4, 8, 0, 8, 4, 0, 3, 0, 4, 5, 1, 3, 3, 7, 1, 6, 6, 4, 4, 6, 5, 6, 3, 1, 8
Offset: 1

Views

Author

A.H.M. Smeets, May 24 2025

Keywords

Examples

			2.29428036027904171982205036135959386895986172106028...
		

Crossrefs

There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
3 | A384277, this sequence, A384279 | A384463, A384464, A384465

Programs

  • Mathematica
    First[RealDigits[Root[LaguerreL[3, #] &, 2], 10, 100]] (* Paolo Xausa, Jun 05 2025 *)

Formula

Second smallest root of x^3 - 9 x^2 + 18 x - 6 = 0.

A384586 Decimal expansion of the second largest zero of the Laguerre polynomial of degree 4.

Original entry on oeis.org

4, 5, 3, 6, 6, 2, 0, 2, 9, 6, 9, 2, 1, 1, 2, 7, 9, 8, 3, 2, 7, 9, 2, 8, 5, 3, 8, 4, 9, 5, 7, 1, 3, 7, 8, 8, 0, 1, 2, 5, 7, 8, 4, 3, 5, 3, 3, 8, 6, 8, 0, 4, 6, 4, 9, 7, 4, 8, 0, 5, 7, 5, 8, 7, 5, 5, 5, 8, 2, 8, 4, 5, 0, 8, 7, 5, 1, 4, 3, 1, 5, 8, 9, 7, 6, 5, 3
Offset: 1

Views

Author

A.H.M. Smeets, Jun 04 2025

Keywords

Examples

			4.53662029692112798327928538495713788012578435338680...
		

Crossrefs

There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
4 | A384280, A384281, this sequence, A384587 | A384466, A384467, A384588, A384589

Programs

  • Mathematica
    First[RealDigits[Root[LaguerreL[4, #] &, 3], 10, 100]] (* Paolo Xausa, Jun 18 2025 *)
  • PARI
    solve(x = 2, 6, x^4 - 16*x^3 + 72*x^2 - 96*x + 24)

Formula

Second largest root of x^4 - 16 x^3 + 72 x^2 - 96 x + 24 = 0.

A384588 Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384586.

Original entry on oeis.org

0, 3, 8, 8, 8, 7, 9, 0, 8, 5, 1, 5, 0, 0, 5, 3, 8, 4, 2, 7, 2, 4, 3, 8, 1, 6, 8, 1, 5, 6, 2, 0, 9, 9, 1, 3, 7, 2, 2, 3, 0, 7, 1, 9, 1, 3, 4, 8, 2, 7, 6, 9, 0, 2, 1, 8, 1, 6, 3, 5, 2, 9, 2, 4, 0, 4, 5, 2, 5, 7, 6, 2, 9, 1, 0, 1, 7, 6, 9, 8, 0, 9, 9, 9, 8, 4, 3, 3
Offset: 0

Views

Author

A.H.M. Smeets, Jun 07 2025

Keywords

Examples

			0.038887908515005384272438168156209913722307191348276...
		

Crossrefs

There are k positive real zeros of the Laguerre polynomial of degree k:
k | zeros | corresponding weights for Laguerre-Gauss quadrature
---+------------------------------------------+-----------------------------------------------------
4 | A384280, A384281, A384586, A384587 | A384466, A384467, this sequence, A384589

Programs

  • Mathematica
    First[RealDigits[Root[1990656*#^4 - 1990656*#^3 + 504576*#^2 - 16960*# + 9 &, 2], 10, 100, -1]] (* Paolo Xausa, Jun 26 2025 *)
  • PARI
    solve(x = 0.1, 0.04, 1990656*x^4 - 1990656*x^3 + 504576*x^2 - 16960*x + 9)

Formula

Second smallest root of 1990656*x^4 - 1990656*x^3 + 504576*x^2 - 16960*x + 9 = 0.

A384590 a(n) = floor(X(n,n)), where X(n,n) is the largest zero of the Laguerre polynomial of degree n.

Original entry on oeis.org

1, 3, 6, 9, 12, 15, 19, 22, 26, 29, 33, 37, 40, 44, 48, 51, 55, 59, 62, 66, 70, 73, 77, 81, 85, 89, 92, 96, 100, 104, 107, 111, 115, 119, 123, 126, 130, 134, 138, 142, 146, 149, 153, 157, 161, 165, 169, 172, 176, 180, 184, 188, 192, 196, 199, 203, 207, 211
Offset: 1

Views

Author

A.H.M. Smeets, Jun 14 2025

Keywords

Comments

For X(k,n), the k-th smallest zero of the Laguerre polynomial of degree n, see formula section of A091476, for large n and relative small k, k << n.
Some terms for large n:
a(1000) = floor(3943.2473948452...), a(2000) = floor(7927.9014222639...), a(4000) = floor(15908.5812117320...), a(8000) = floor(31884.2511300626...), a(16000) = floor(63853.6067816122...), a(32000) = floor(127815.0051094389...), a(64000) = floor(255766.3763209512...), a(128000) = floor(511705.1129209706...), a(256000) = floor(1023627.9299056501...), a(512000) = floor(2047530.6886230061...).

Crossrefs

Cf. A091476.
Cf. 1+A014176 (n=2), A384279 (n=3), A384587 (n=4).

Programs

Formula

Limit_{n -> oo} X(n,n)/n = 4.
a(n) ~ floor(4*n + 2 - 5.8917*n^(1/3)).
Showing 1-7 of 7 results.