A384870 The largest k such that the set {1^n, 2^n, ..., k^n} has uniquely distinct subset sums.
1, 2, 4, 5, 8, 11, 15, 19, 21, 28, 30, 37, 42, 45, 45
Offset: 0
Examples
For n=2, the set {1^2, 2^2, 3^2, 4^2} = {1, 4, 9, 16} has uniquely distinct subset sums. However, adding 5^2 = 25 introduces a duplicate sum: 9 + 16 = 25. Thus, the largest k that satisfies the subset sum uniqueness condition is 4, meaning a(2)=4.
Links
- David A. Corneth, PARI program
Programs
-
Maple
A := proc(n) local k, S, T, subsetsum; k := 1; while true do S := {seq(i^n, i=1..k)}; T := combinat[powerset](S); subsetsum := map(x -> add(x), T); if numelems(subsetsum) = numelems(T) then k := k + 1; else return k - 1; end if; end do; end proc;
-
Mathematica
A[n_] := Module[{k = 1, S, subsetSums}, While[True, S = Table[i^n, {i, 1, k}]; subsetSums = Total /@ Subsets[S]; If[Length[subsetSums] == Length[DeleteDuplicates[subsetSums]], k++, Return[k - 1]]; ] ]
-
PARI
isok(k,n) = my(list=List()); forsubset(k, s, listput(list, sum(i=1, #s, s[i]^n));); if (#Set(list) != #list, return(0)); 1; a(n) = for (k=1, oo, if (!isok(k,n), return(k-1));); \\ Michel Marcus, Jun 14 2025
-
PARI
\\ See Corneth link
-
Python
def a(n): k = 1 while True: powers = [(i + 1) ** n for i in range(k)] subset_sums = set() all_unique = True for mask in range(1 << k): total = sum(powers[i] for i in range(k) if mask & (1 << i)) if total in subset_sums: all_unique = False break subset_sums.add(total) if not all_unique: return k - 1 k += 1 print([a(n) for n in range(9)])
-
Python
from itertools import chain, combinations, count def powerset(s): return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) def a(n): s, sums = {1}, {1} for k in count(2): t = k**n newsums = set(sum(ss)+t for ss in powerset(s)) if newsums & sums: return k-1 s, sums = s|{t}, s|newsums print([a(n) for n in range(9)]) # Michael S. Branicky, Jun 14 2025
Formula
1/(2^(1/n)-1) + 1 <= a(n) <= e^(-LambertW(-1, -log(2)/(n+1))). - Yifan Xie, Jun 16 2025
Extensions
a(9)-a(10) from Michael S. Branicky, Jun 13 2025
a(11) from Jinyuan Wang, Jun 14 2025
a(12)-a(14) from David A. Corneth, Jun 16 2025
Comments