A384876 Smallest number m such that both m-1 and m+1 are products of at least n (not necessarily distinct) primes.
3, 5, 17, 55, 161, 1457, 2431, 13121, 101249, 153089, 2086399, 7991297, 65071999, 72630271, 2829746177, 2975006719, 68278476799, 75389157377, 159703334911, 1570258288639, 9714181341185, 91845775327231, 551785225781249, 2123044908695551, 4560483868737535, 4560483868737535, 424428773098651649
Offset: 1
Keywords
Examples
The smallest number surrounded by semiprime numbers is 5 (between 4 and 6). And 17 lies between 16 = 2^4 and 18 = 2*3^2.
Programs
-
Maple
F:= proc(n) local pq,t,x,y,z,p,i,m; uses priqueue; initialize(pq); insert([-2^n, 2$n], pq); y:= -infinity; z:= -infinity; do t:= extract(pq); x:= -t[1]; if x-y=2 or x-z=2 then return x-1 fi; z:= y; y:= x; m:= nops(t); if t[-1] = 2 then insert([2*t[1],2$m],pq) fi; p:= nextprime(t[-1]); for i from m to 2 by -1 while t[i] = t[-1] do insert([t[1]*(p/t[-1])^(m+1-i), op(t[2..i-1]), p$(m+1-i)], pq) od; od end proc: seq(F(i),i=1..20); # Robert Israel, Jun 12 2025
-
PARI
a(n) = my(m=2); while((bigomega(m-1)
Michel Marcus, Jun 13 2025
Extensions
a(10)-a(13) from Alois P. Heinz, Jun 12 2025
a(14)-a(20) from Robert Israel, Jun 12 2025
More terms from David A. Corneth, Jun 13 2025
Comments