cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384876 Smallest number m such that both m-1 and m+1 are products of at least n (not necessarily distinct) primes.

Original entry on oeis.org

3, 5, 17, 55, 161, 1457, 2431, 13121, 101249, 153089, 2086399, 7991297, 65071999, 72630271, 2829746177, 2975006719, 68278476799, 75389157377, 159703334911, 1570258288639, 9714181341185, 91845775327231, 551785225781249, 2123044908695551, 4560483868737535, 4560483868737535, 424428773098651649
Offset: 1

Views

Author

Sinuhe Perea, Jun 12 2025

Keywords

Comments

The sequence is nondecreasing. - David A. Corneth, Jun 13 2025

Examples

			The smallest number surrounded by semiprime numbers is 5 (between 4 and 6).
And 17 lies between 16 = 2^4 and 18 = 2*3^2.
		

Crossrefs

Programs

  • Maple
    F:= proc(n) local pq,t,x,y,z,p,i,m;
      uses priqueue;
      initialize(pq);
          insert([-2^n, 2$n], pq);
      y:= -infinity; z:= -infinity;
        do
          t:= extract(pq);
          x:= -t[1];
          if x-y=2 or x-z=2 then return x-1 fi;
          z:= y; y:= x; m:= nops(t);
          if t[-1] = 2 then insert([2*t[1],2$m],pq) fi;
          p:= nextprime(t[-1]);
          for i from m to 2 by -1 while t[i] = t[-1] do
            insert([t[1]*(p/t[-1])^(m+1-i), op(t[2..i-1]), p$(m+1-i)], pq)
          od;
        od
    end proc:
    seq(F(i),i=1..20); # Robert Israel, Jun 12 2025
  • PARI
    a(n) = my(m=2); while((bigomega(m-1)Michel Marcus, Jun 13 2025

Extensions

a(10)-a(13) from Alois P. Heinz, Jun 12 2025
a(14)-a(20) from Robert Israel, Jun 12 2025
More terms from David A. Corneth, Jun 13 2025