A385035 Primes p such that p + 8, p + 14, p + 18 and p + 20 are also primes.
23, 53, 89, 263, 599, 1283, 1979, 3449, 5399, 5639, 11813, 14543, 41213, 42443, 44249, 47129, 55799, 57773, 65699, 74699, 75983, 79613, 84299, 87539, 88643, 88793, 88799, 113153, 115763, 126473, 143813, 148913, 150203, 160073, 163973, 167099, 176489, 178799, 178889, 209249
Offset: 1
Keywords
Examples
p=23: 23+8=31, 23+14=37, 23+18=41, 23+20=43 —> prime quintuple: (23, 31, 37, 41, 43).
Programs
-
Magma
[p: p in PrimesUpTo(300000) | IsPrime(p+8) and IsPrime(p+14) and IsPrime(p+18) and IsPrime(p+20)]; // Vincenzo Librandi, Jul 04 2025
-
Maple
q:= p-> andmap(i-> isprime(p+i), [0, 8, 14, 18, 20]): select(q, [5+6*i$i=0..35000])[]; # Alois P. Heinz, Jun 16 2025
-
Mathematica
Select[Prime[Range[20000]], AllTrue[#+{8, 14, 18,20}, PrimeQ]&] (* Stefano Spezia, Jun 18 2025 *)