A347840 A surjective map of the positive numbers congruent to 5 modulo 8 (A004770) to the positive numbers congruent to 1, 3, or 7 modulo 8 (A047529).
1, 3, 1, 7, 9, 11, 3, 15, 17, 19, 1, 23, 25, 27, 7, 31, 33, 35, 9, 39, 41, 43, 11, 47, 49, 51, 3, 55, 57, 59, 15, 63, 65, 67, 17, 71, 73, 75, 19, 79, 81, 83, 1, 87, 89, 91, 23, 95, 97, 99, 25, 103, 105, 107, 27, 111, 113, 115, 7, 119, 121
Offset: 1
Examples
The sequence a(n) begins: (b(n) = A004770(n)) ------------------------------------------------------------------------- n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 b(n): 5 13 21 29 37 45 53 61 69 77 85 93 101 109 117 125 133 141 149 157 a(n): 1 3 1 7 9 11 3 15 17 19 1 23 25 27 7 31 35 35 9 39 ------------------------------------------------------------------------- n: 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ... b(n): 165 173 181 189 197 205 213 221 229 237 245 253 261 269 277 285 293 ... a(n): 41 43 11 47 49 51 3 55 57 59 15 63 65 67 17 71 73 ... ----------------------------------------------------------------------------- n = 6, b(6) = 45 = 13 + 32*1, case a), a(6) = 3 + 8*1 = 11. n = 7, b(7) = 53 = 21 + 32*1, case b)1), first instance, L(7) = 0, a(7) = 3 + 8*0 = 3. n = 31, b(31) = 245 = 117 + 128*1, case b)1), second instance, L(31) = 1, a(31) = 7 + 8*1 = 15. n = 11, b(11) = 85 = 21 + 64*1, A065883(1 + 3*1) = 1, c(11) = 1, case b)2)i), a(11) = 85 = A347834(1, 3). n = 19, b(19) = 149 = 21 + 64*2, A065883(1 + 3*2) = 7, c(19) = (7 - 1)/3 = 2, case b)2)ii), a(n) = 4*2 + 1 = 9.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
A347840[n_] := NestWhile[Quotient[#, 4] &, 2*n - 1, Mod[#, 8] == 5 &]; Array[A347840, 100] (* Paolo Xausa, Jun 25 2025 *)
-
PARI
a(n) = n=2*n-1; while(5==n%8, n>>=2); n; \\ Ruud H.G. van Tol, Sep 13 2023
-
PARI
a(n) = (2*n-1)>>(valuation(3*n-1,2)\2*2); \\ Ruud H.G. van Tol, Sep 20 2023
Formula
a(n) = A385109(8*(n-1)+5). - Ralf Stephan, Jun 18 2025
Comments