cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385189 Intersection of A055932 and A002378.

Original entry on oeis.org

2, 6, 12, 30, 72, 90, 210, 240, 420, 600, 1260, 6480, 15750, 50400, 147840, 194040, 291060, 510510, 2942940, 4324320, 5762400, 9147600, 19136250, 96049800, 153153000, 15178363200, 37822664880, 401392571580
Offset: 1

Views

Author

Ken Clements, Jun 20 2025

Keywords

Comments

These numbers are the products of two consecutive integers and also their squarefree part a primorial.
The last is 633555*633556 = 401392571580. See proof of finiteness in Clements link.

Examples

			a(1) = 2 = 1*2 = 2^1.
a(2) = 6 = 2*3 = 2^1 * 3^1.
a(3) = 12 = 3*4 = 2^2 * 3^1.
a(4) = 30 = 5*6 = 2^1 * 3^1 * 5^1.
a(5) = 72 = 8*9 = 2^3 * 3^2.
a(6) = 90 = 9*10 = 2^1 * 3^2 * 5^1.
		

References

  • Ken Clements, Proof that the Equation A! x B! = C! Has Only One Solution for Integers 1 < A < B < C-1, submitted to INTEGERS, 2025.

Crossrefs

Programs

  • Maple
    q:= n-> (s-> nops(s)=numtheory[pi](max(s)))({ifactors(n)[2][.., 1][]}):
    select(q, [i*(i+1)$i=1..640000])[];  # Alois P. Heinz, Jun 24 2025
  • Mathematica
    Select[(#*(# + 1)) & /@ Range[633555], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* Amiram Eldar, Jun 22 2025 *)
  • PARI
    lista(nn) = my(list=List()); for (n=1, nn, my(f=factor(n*(n+1))[, 1]~); if (f==primes(#f), listput(list, n*(n+1)))); Vec(list); \\ Michel Marcus, Jun 22 2025
  • Python
    from sympy import prime, primefactors
    def is_pi_complete(n): # Check for complete set of
        factors = primefactors(n) # prime factors
        return factors[-1] == prime(len(factors))
    def aupto(limit):
        result = []
        for i in range(1, limit+1):
            n = i * (i+1)
            if is_pi_complete(n):
                result.append(n)
        return result
    print(aupto(100_000_000))
    

Formula

A007947(a(n)) is in A002110.