A385189 Intersection of A055932 and A002378.
2, 6, 12, 30, 72, 90, 210, 240, 420, 600, 1260, 6480, 15750, 50400, 147840, 194040, 291060, 510510, 2942940, 4324320, 5762400, 9147600, 19136250, 96049800, 153153000, 15178363200, 37822664880, 401392571580
Offset: 1
Examples
a(1) = 2 = 1*2 = 2^1. a(2) = 6 = 2*3 = 2^1 * 3^1. a(3) = 12 = 3*4 = 2^2 * 3^1. a(4) = 30 = 5*6 = 2^1 * 3^1 * 5^1. a(5) = 72 = 8*9 = 2^3 * 3^2. a(6) = 90 = 9*10 = 2^1 * 3^2 * 5^1.
References
- Ken Clements, Proof that the Equation A! x B! = C! Has Only One Solution for Integers 1 < A < B < C-1, submitted to INTEGERS, 2025.
Links
- Ken Clements, See: Appendix A of this proof
Programs
-
Maple
q:= n-> (s-> nops(s)=numtheory[pi](max(s)))({ifactors(n)[2][.., 1][]}): select(q, [i*(i+1)$i=1..640000])[]; # Alois P. Heinz, Jun 24 2025
-
Mathematica
Select[(#*(# + 1)) & /@ Range[633555], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* Amiram Eldar, Jun 22 2025 *)
-
PARI
lista(nn) = my(list=List()); for (n=1, nn, my(f=factor(n*(n+1))[, 1]~); if (f==primes(#f), listput(list, n*(n+1)))); Vec(list); \\ Michel Marcus, Jun 22 2025
-
Python
from sympy import prime, primefactors def is_pi_complete(n): # Check for complete set of factors = primefactors(n) # prime factors return factors[-1] == prime(len(factors)) def aupto(limit): result = [] for i in range(1, limit+1): n = i * (i+1) if is_pi_complete(n): result.append(n) return result print(aupto(100_000_000))
Comments