A385415
Products of three consecutive integers whose prime divisors are consecutive primes starting at 2.
Original entry on oeis.org
6, 24, 60, 120, 210, 720, 3360, 9240, 117600, 166320, 970200, 43243200, 85765680
Offset: 1
a(1) = 6 = 1*2*3 = 2^1 * 3^1.
a(2) = 24 = 2*3*4 = 2^3 * 3^1.
a(3) = 60 = 3*4*5 = 2^2 * 3^1 * 5^1.
a(4) = 120 = 4*5*6 = 2^3 * 3^1 * 5^1.
a(5) = 210 = 5*6*7 = 2^1 * 3^1 * 5^1 * 7^1.
a(6) = 720 = 8*9*10 = 2^4 * 3^2 * 5^1.
...
a(13) = 85765680 = 440*441*442 = 2^4 * 3^2 * 5^1 * 7^2 * 11^1 * 13^1 * 17^1.
-
Select[(#*(# + 1)*(# + 2)) & /@ Range[500], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* Amiram Eldar, Jun 28 2025 *)
-
from sympy import prime, primefactors
def is_pi_complete(n): # Check for complete set of
factors = primefactors(n) # prime factors
return factors[-1] == prime(len(factors))
def aupto(limit):
result = []
for i in range(1, limit+1):
n = i * (i+1) * (i+2)
if is_pi_complete(n):
result.append(n)
return result
print(aupto(100_000))
Original entry on oeis.org
2, 6, 12, 30, 72, 210, 240, 420, 1260, 6480, 50400, 147840, 510510, 4324320
Offset: 1
a(1) = 2 = 1*2 = 2^1.
a(2) = 6 = 2*3 = 2^1 * 3^1.
a(3) = 12 = 3*4 = 2^2 * 3^1.
a(4) = 30 = 5*6 = 2^1 * 3^1 * 5^1.
a(5) = 72 = 8*9 = 2^3 * 3^2.
a(6) = 210 = 14*15 = 2^1 * 3^1 * 5^1 * 7^1.
-
Select[FactorialPower[Range[0, 3000], 2], (Max@Differences[(f = FactorInteger[#])[[;; , 2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]) &] (* Amiram Eldar, Aug 10 2025 *)
-
from sympy import prime, factorint
def is_Hardy_Ramanujan(n):
factors = factorint(n)
p_idx = len(factors)
if list(factors.keys())[-1] != prime(p_idx):
return False
expos = list(factors.values())
e = expos[0]
for i in range(1, p_idx):
if expos[i] > e:
return False
e = expos[i]
return True
print([ n*(n+1) for n in range(1, 10_000) if is_Hardy_Ramanujan(n*(n+1))])
Original entry on oeis.org
6, 24, 60, 120, 210, 720, 3360, 9240, 166320, 970200, 43243200
Offset: 1
a(1) = 6 = 1*2*3 = 2^1 * 3^1.
a(2) = 24 = 2*3*4 = 2^3 * 3^1.
a(3) = 60 = 3*4*5 = 2^2 * 3^1 * 5^1.
a(4) = 120 = 4*5*6 = 2^3 * 3^1 * 5^1.
a(5) = 210 = 5*6*7 = 2^1 * 3^1 * 5^1 * 7^1.
a(6) = 720 = 8*9*10 = 2^4 * 3^2 * 5^1.
-
Select[FactorialPower[Range[0, 1000], 3], (Max@ Differences[(f = FactorInteger[#])[[;; , 2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]) &] (* Amiram Eldar, Aug 10 2025 *)
-
from sympy import prime, factorint
def is_Hardy_Ramanujan(n):
factors = factorint(n)
p_idx = len(factors)
if list(factors.keys())[-1] != prime(p_idx):
return False
expos = list(factors.values())
e = expos[0]
for i in range(1, p_idx):
if expos[i] > e:
return False
e = expos[i]
return True
print([ n*(n+1)*(n+2) for n in range(1, 1000) if is_Hardy_Ramanujan(n*(n+1)*(n+2))])
A385631
Products of five consecutive integers whose prime divisors are consecutive primes starting at 2.
Original entry on oeis.org
120, 720, 2520, 6720, 15120, 30240, 55440, 240240, 360360
Offset: 1
a(1) = 120 = 1*2*3*4*5 = 2^3 * 3^1 * 5^1.
a(2) = 720 = 2*3*4*5*6 = 2^4 * 3^2 * 5^1.
a(3) = 2520 = 3*4*5*6*7 = 2^3 * 3^2 * 5^1 * 7^1.
a(4) = 6720 = 4*5*6*7*8 = 2^6 * 3^1 * 5^1 * 7^1.
a(5) = 15120 = 5*6*7*8*9 = 2^4 * 3^3 * 5^1 * 7^1.
a(6) = 30240 = 6*7*8*9*10 = 2^5 * 3^3 * 5^1 * 7^1.
a(7) = 55440 = 7*8*9*10*11 = 2^4 * 3^2 * 5^1 * 7^1 * 11^1.
a(8) = 240240 = 10*11*12*13*14 = 2^4 * 3^1 * 5^1 * 7^1 * 11^1 * 13^1.
a(9) = 360360 = 11*12*13*14*15 = 2^3 * 3^2 * 5^1 * 7^1 * 11^1 * 13^1.
-
Select[(#*(# + 1)*(# + 2)*(# + 3)*(# + 4)) & /@ Range[12], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* Amiram Eldar, Jul 05 2025 *)
-
from sympy import prime, primefactors
def is_pi_complete(n): # Check for complete set of
factors = primefactors(n) # prime factors
return factors[-1] == prime(len(factors))
def aupto(limit):
result = []
for i in range(1, limit+1):
n = i * (i+1) * (i+2) * (i+3) * (i+4)
if is_pi_complete(n):
result.append(n)
return result
print(aupto(1000))
Showing 1-4 of 4 results.
Comments