cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A385415 Products of three consecutive integers whose prime divisors are consecutive primes starting at 2.

Original entry on oeis.org

6, 24, 60, 120, 210, 720, 3360, 9240, 117600, 166320, 970200, 43243200, 85765680
Offset: 1

Views

Author

Ken Clements, Jun 28 2025

Keywords

Comments

The final term is 440*441*442 = 85765680.
Let tau(a(n)) be the number of divisors of a(n), sigma(a(n)) be the sum of divisors of a(n), S be the strictly increasing sequence of divisors of a(n), and S(i) be the i-th element of S. Since sigma(a(n)) is even and for every i in the interval [1, tau(a(n))-1], 2*S(i) >= S(i+1), a(n) is a Zumkeller number (see Proposition 17 in Rao/Peng JNT paper at A083207). - Ivan N. Ianakiev, Jul 09 2025

Examples

			a(1) = 6 = 1*2*3 = 2^1 * 3^1.
a(2) = 24 = 2*3*4 = 2^3 * 3^1.
a(3) = 60 = 3*4*5 = 2^2 * 3^1 * 5^1.
a(4) = 120 = 4*5*6 = 2^3 * 3^1 * 5^1.
a(5) = 210 = 5*6*7 = 2^1 * 3^1 * 5^1 * 7^1.
a(6) = 720 = 8*9*10 = 2^4 * 3^2 * 5^1.
...
a(13) = 85765680 = 440*441*442 = 2^4 * 3^2 * 5^1 * 7^2 * 11^1 * 13^1 * 17^1.
		

Crossrefs

Intersection of A007531 and A055932.
Cf. A385189, A083207 (supersequence).

Programs

  • Mathematica
    Select[(#*(# + 1)*(# + 2)) & /@ Range[500], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* Amiram Eldar, Jun 28 2025 *)
  • Python
    from sympy import prime, primefactors
    def is_pi_complete(n): # Check for complete set of
        factors = primefactors(n) # prime factors
        return factors[-1] == prime(len(factors))
    def aupto(limit):
        result = []
        for i in range(1, limit+1):
            n = i * (i+1) * (i+2)
            if is_pi_complete(n):
                result.append(n)
        return result
    print(aupto(100_000))

A385956 Intersection of A025487 and A002378.

Original entry on oeis.org

2, 6, 12, 30, 72, 210, 240, 420, 1260, 6480, 50400, 147840, 510510, 4324320
Offset: 1

Views

Author

Ken Clements, Aug 10 2025

Keywords

Comments

These numbers are the products of two consecutive integers that are also Hardy-Ramanujan integers; that is, of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n. This sequence is finite with last term a(14) = 2079*2080 = 4324320.

Examples

			a(1) = 2 = 1*2 = 2^1.
a(2) = 6 = 2*3 = 2^1 * 3^1.
a(3) = 12 = 3*4 = 2^2 * 3^1.
a(4) = 30 = 5*6 = 2^1 * 3^1 * 5^1.
a(5) = 72 = 8*9 = 2^3 * 3^2.
a(6) = 210 = 14*15 = 2^1 * 3^1 * 5^1 * 7^1.
		

Crossrefs

Programs

  • Mathematica
    Select[FactorialPower[Range[0, 3000], 2], (Max@Differences[(f = FactorInteger[#])[[;; , 2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]) &] (* Amiram Eldar, Aug 10 2025 *)
  • Python
    from sympy import prime, factorint
    def is_Hardy_Ramanujan(n):
        factors = factorint(n)
        p_idx = len(factors)
        if list(factors.keys())[-1] != prime(p_idx):
            return False
        expos = list(factors.values())
        e = expos[0]
        for i in range(1, p_idx):
            if expos[i] > e:
                return False
            e = expos[i]
        return True
    print([ n*(n+1) for n in range(1, 10_000) if is_Hardy_Ramanujan(n*(n+1))])

A386951 Intersection of A025487 and A007531.

Original entry on oeis.org

6, 24, 60, 120, 210, 720, 3360, 9240, 166320, 970200, 43243200
Offset: 1

Views

Author

Ken Clements, Aug 10 2025

Keywords

Comments

These numbers are the products of three consecutive integers that are also Hardy-Ramanujan integers; that is, of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n. This sequence is finite with last term a(11) = 350*351*352 = 43243200.

Examples

			a(1) = 6 = 1*2*3 = 2^1 * 3^1.
a(2) = 24 = 2*3*4 = 2^3 * 3^1.
a(3) = 60 = 3*4*5 = 2^2 * 3^1 * 5^1.
a(4) = 120 = 4*5*6 = 2^3 * 3^1 * 5^1.
a(5) = 210 = 5*6*7 = 2^1 * 3^1 * 5^1 * 7^1.
a(6) = 720 = 8*9*10 = 2^4 * 3^2 * 5^1.
		

Crossrefs

Programs

  • Mathematica
    Select[FactorialPower[Range[0, 1000], 3], (Max@ Differences[(f = FactorInteger[#])[[;; , 2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]) &] (* Amiram Eldar, Aug 10 2025 *)
  • Python
    from sympy import prime, factorint
    def is_Hardy_Ramanujan(n):
        factors = factorint(n)
        p_idx = len(factors)
        if list(factors.keys())[-1] != prime(p_idx):
            return False
        expos = list(factors.values())
        e = expos[0]
        for i in range(1, p_idx):
            if expos[i] > e:
                return False
            e = expos[i]
        return True
    print([ n*(n+1)*(n+2) for n in range(1, 1000) if is_Hardy_Ramanujan(n*(n+1)*(n+2))])

A385631 Products of five consecutive integers whose prime divisors are consecutive primes starting at 2.

Original entry on oeis.org

120, 720, 2520, 6720, 15120, 30240, 55440, 240240, 360360
Offset: 1

Views

Author

Ken Clements, Jul 05 2025

Keywords

Examples

			a(1) = 120 = 1*2*3*4*5 = 2^3 * 3^1 * 5^1.
a(2) = 720 = 2*3*4*5*6 = 2^4 * 3^2 * 5^1.
a(3) = 2520 = 3*4*5*6*7 = 2^3 * 3^2 * 5^1 * 7^1.
a(4) = 6720 = 4*5*6*7*8 = 2^6 * 3^1 * 5^1 * 7^1.
a(5) = 15120 = 5*6*7*8*9 = 2^4 * 3^3 * 5^1 * 7^1.
a(6) = 30240 = 6*7*8*9*10 = 2^5 * 3^3 * 5^1 * 7^1.
a(7) = 55440 = 7*8*9*10*11 = 2^4 * 3^2 * 5^1 * 7^1 * 11^1.
a(8) = 240240 = 10*11*12*13*14 = 2^4 * 3^1 * 5^1 * 7^1 * 11^1 * 13^1.
a(9) = 360360 = 11*12*13*14*15 = 2^3 * 3^2 * 5^1 * 7^1 * 11^1 * 13^1.
		

Crossrefs

Intersection of A052787 and A055932.

Programs

  • Mathematica
    Select[(#*(# + 1)*(# + 2)*(# + 3)*(# + 4)) & /@ Range[12], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* Amiram Eldar, Jul 05 2025 *)
  • Python
    from sympy import prime, primefactors
    def is_pi_complete(n): # Check for complete set of
        factors = primefactors(n) # prime factors
        return factors[-1] == prime(len(factors))
    def aupto(limit):
        result = []
        for i in range(1, limit+1):
            n = i * (i+1) * (i+2) * (i+3) * (i+4)
            if is_pi_complete(n):
                result.append(n)
        return result
    print(aupto(1000))
Showing 1-4 of 4 results.