cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A386443 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} k^2 * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 11, 120, 2166, 58642, 2231959, 113926332, 7522541374, 624529876412, 63711767096254, 7837308575551868, 1144321503810951264, 195687862794184808186, 38747465910056072904383, 8795888226933223095245628, 2269380895962602685279019270, 660399219910352767447886420340
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, j^2*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x^2 * (d/dx A(x)) - x^3 * (d^2/dx^2 A(x)) ).

A386453 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+2,3) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 11, 131, 2888, 107027, 6212005, 534389458, 65203760863, 10889677250198, 2417582805875622, 696275799766601842, 254839529849806176727, 116462397939843834894367, 65452132793842930368844779, 44638474752168615525812508053, 36514339485766910607857620043816
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+2, 3)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..3} binomial(2,k-1) * x^k/k! * (d^k/dx^k A(x)) ).

A386454 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+3,4) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 13, 220, 8148, 586948, 75141039, 15930666825, 5289069956220, 2628685323745449, 1884772989271329869, 1890430039448133854031, 2584219798288871040676608, 4708450397910844142927823544, 11215531466814325127916787062534, 34341962107081618846057340207455738
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+3, 4)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..4} binomial(3,k-1) * x^k/k! * (d^k/dx^k A(x)) ).

A386455 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+4,5) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 15, 344, 19962, 2555592, 649147331, 301207446317, 239159429472132, 308276821981867349, 617786997525975886618, 1856450241316927094671750, 8112688179283378712969957414, 50217541700003149682333160103969, 430364340522944093019900101527085125
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+4, 5)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..5} binomial(4,k-1) * x^k/k! * (d^k/dx^k A(x)) ).

A386510 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (1 + k) * binomial(k+1,2) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 34, 949, 52421, 5050711, 779516095, 181069531665, 60337677803905, 27766510630927741, 17108421087708824831, 13757393965653865220629, 14130398908817131991819653, 18201370833558663815315691987, 28941823262680770630349968403381, 56033750665620660972762531436196641
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, (1+j)*binomial(j+1, 2)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( x + x^2 * (d/dx A(x)) + x^3/2 * (d^2/dx^2 A(x)) ).
Showing 1-5 of 5 results.