cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386452 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+1,2) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 9, 71, 856, 14639, 338086, 10167592, 386920264, 18200571057, 1037970049307, 70605576249333, 5649723531576365, 525507834721871564, 56235831305760575845, 6861362229615344431713, 946930149578851143467375, 146781656943702604491445861, 25394248429778915431816805711
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+1, 2)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x^2 * (d/dx A(x)) - x^3/2 * (d^2/dx^2 A(x)) ).

A386453 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+2,3) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 11, 131, 2888, 107027, 6212005, 534389458, 65203760863, 10889677250198, 2417582805875622, 696275799766601842, 254839529849806176727, 116462397939843834894367, 65452132793842930368844779, 44638474752168615525812508053, 36514339485766910607857620043816
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+2, 3)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..3} binomial(2,k-1) * x^k/k! * (d^k/dx^k A(x)) ).

A386454 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+3,4) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 13, 220, 8148, 586948, 75141039, 15930666825, 5289069956220, 2628685323745449, 1884772989271329869, 1890430039448133854031, 2584219798288871040676608, 4708450397910844142927823544, 11215531466814325127916787062534, 34341962107081618846057340207455738
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+3, 4)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..4} binomial(3,k-1) * x^k/k! * (d^k/dx^k A(x)) ).

A386513 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (1 + k) * binomial(k+4,5) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 61, 5365, 1529521, 1165598707, 2064316175293, 7646264783133257, 54571471797846058921, 702880914451594090404601, 15486578255494092846454504205, 558260219954065540499622238580509, 31707506930744375037184483066962163261, 2747328696602823034266635550466257234352117
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, (1+j)*binomial(j+4, 5)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( x + x*Sum_{k=1..5} binomial(4,k-1) * x^k/k! * (d^k/dx^k A(x)) ).
Showing 1-4 of 4 results.