cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386452 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+1,2) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 9, 71, 856, 14639, 338086, 10167592, 386920264, 18200571057, 1037970049307, 70605576249333, 5649723531576365, 525507834721871564, 56235831305760575845, 6861362229615344431713, 946930149578851143467375, 146781656943702604491445861, 25394248429778915431816805711
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+1, 2)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x^2 * (d/dx A(x)) - x^3/2 * (d^2/dx^2 A(x)) ).

A386453 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+2,3) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 11, 131, 2888, 107027, 6212005, 534389458, 65203760863, 10889677250198, 2417582805875622, 696275799766601842, 254839529849806176727, 116462397939843834894367, 65452132793842930368844779, 44638474752168615525812508053, 36514339485766910607857620043816
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+2, 3)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..3} binomial(2,k-1) * x^k/k! * (d^k/dx^k A(x)) ).

A386455 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+4,5) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 2, 15, 344, 19962, 2555592, 649147331, 301207446317, 239159429472132, 308276821981867349, 617786997525975886618, 1856450241316927094671750, 8112688179283378712969957414, 50217541700003149682333160103969, 430364340522944093019900101527085125
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+4, 5)*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..5} binomial(4,k-1) * x^k/k! * (d^k/dx^k A(x)) ).

A386512 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} (1 + k) * binomial(k+3,4) * binomial(n-1,k) * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 52, 3325, 598906, 255199051, 226888865575, 382997189880593, 1140957869006770561, 5659169551911928576531, 44571684957086887771692731, 535930324156886354251195391269, 9517054240482595566592327616630965, 242627830243798770154326313268171970697
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, (1+j)*binomial(j+3, 4)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

E.g.f. A(x) satisfies A(x) = exp( x + x*Sum_{k=1..4} binomial(3,k-1) * x^k/k! * (d^k/dx^k A(x)) ).
Showing 1-4 of 4 results.