cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A156325 E.g.f.: A(x) = exp( Sum_{n>=1} n(n+1)/2 * a(n-1)*x^n/n! ) = Sum_{n>=0} a(n)*x^n/n! with a(0)=1.

Original entry on oeis.org

1, 1, 4, 34, 482, 10056, 286372, 10591372, 491169996, 27826318000, 1887581200256, 150885500428224, 14028718134958936, 1500672248541122944, 182987661921689610000, 25231215606822797450176, 3906382859414378995123088, 674864208557744341737593088, 129369340822722468679389762496
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2009

Keywords

Examples

			E.g.f: A(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 482*x^4/4! + 10056*x^5/5! +...
log(A(x)) = x + 3*1*x^2/2! + 6*4*x^3/3! + 10*34*x^4/4! + 15*482*x^5/5! +...
such that log(A(x)) = x*A(x) + x^2*A'(x)/2 = d/dx x^2*A(x)/2.
		

Crossrefs

Programs

  • Mathematica
    terms = 19; A[] = 1; Do[A[x] = Exp[x*A[x]+x^2*A'[x]/2] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] * Range[0,terms-1]! (* Stefano Spezia, Aug 04 2025 *)
  • PARI
    {a(n) = if(n==0,1,n!*polcoeff(exp(sum(k=1,n,k*(k+1)/2*a(k-1)*x^k/k!)+x*O(x^n)),n))}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    {a(n) = if(n==0,1,sum(k=1,n,k*(k+1)/2*binomial(n-1,k-1)*a(k-1)*a(n-k)))}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); for(i=1,n, A = exp(deriv(x^2*A/2 +x^2*O(x^n)))); n!*polcoeff(A,n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Dec 17 2017
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j/2)*binomial(i-1, j)*v[j+1]*v[i-j])); v; \\ Seiichi Manyama, Jul 25 2025

Formula

a(n) = Sum_{k=1..n} k(k+1)/2 * C(n-1,k-1)*a(k-1)*a(n-k) for n>0, with a(0)=1.
E.g.f. A(x) satisfies A(x) = exp( d/dx x^2*A(x)/2 ). - Paul D. Hanna, Dec 17 2017
a(n) ~ c * n!^2 * n^3 / 2^n, where c = 0.1298868467763756870740708... - Vaclav Kotesovec, Aug 05 2025

A385101 E.g.f. A(x) satisfies A(x) = exp(x * A(x) + x^4/24 * A'''(x)).

Original entry on oeis.org

1, 1, 3, 16, 141, 2161, 59842, 2979509, 258264379, 37321303420, 8597483041421, 3028595626839564, 1572449537786394577, 1165432782899826271026, 1199378312656505145280950, 1673258190849282722438631406, 3099020844849243071430739707913, 7481267275389054589164201426886656
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 18; A[] = 1; Do[A[x] = Exp[x*A[x]+x^4*A'''[x]/24] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] * Range[0,terms-1]! (* Stefano Spezia, Aug 04 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+sum(k=1, 3, stirling(3, k, 1)*j^k)/24)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + (2*k - 3*k^2 + k^3)/24) * binomial(n-1,k) * a(k) * a(n-1-k).

A386534 E.g.f. A(x) satisfies A(x) = exp(x * A(x) + x^5/120 * A''''(x)).

Original entry on oeis.org

1, 1, 3, 16, 125, 1421, 26833, 968626, 70638465, 10215072856, 2782227253373, 1347216023489436, 1099522113403916545, 1443781044602756539876, 2930977624516859360997387, 8889808786962394898290294048, 39115513670641030174644662148305, 243377943140592361750259305827057888
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 18; A[] = 1; Do[A[x] = Exp[x*A[x]+x^5*A''''[x]/120] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Aug 04 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+sum(k=1, 4, stirling(4, k, 1)*j^k)/120)*binomial(i-1, j)*v[j+1]*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + (-6*k + 11*k^2 - 6*k^3 + k^4)/120) * binomial(n-1,k) * a(k) * a(n-1-k).
Showing 1-3 of 3 results.