cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387208 Expansion of sqrt((1-x) / (1-9*x)^3).

Original entry on oeis.org

1, 13, 145, 1517, 15329, 151565, 1476465, 14228205, 135990465, 1291409165, 12199991633, 114761111789, 1075651464865, 10051341904141, 93677905064497, 871083359663085, 8083754402585985, 74885500462111245, 692624008942816785, 6397104350057979885, 59008673876627412321
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1-x) / (1-9*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-9*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-x)/(1-9*x)^3))
    

Formula

n*a(n) = (10*n+3)*a(n-1) - 9*(n-1)*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 2^k * (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-2)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k).
a(n) ~ 2^(5/2) * sqrt(n) * 3^(2*n-1) / sqrt(Pi). - Vaclav Kotesovec, Aug 23 2025

A387230 Expansion of sqrt((1-x) / (1-13*x)^5).

Original entry on oeis.org

1, 32, 723, 14044, 250415, 4224732, 68565049, 1081299296, 16679767923, 252819395920, 3777709472537, 55782986878164, 815526073468561, 11821376147023268, 170096339292264375, 2431786467331116016, 34569517907583692867, 488963045591838160848, 6885041951078984405449
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- x) / (1-13*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-13*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sqrt((1-x)/(1-13*x)^5))
    

Formula

n*a(n) = (14*n+18)*a(n-1) - 13*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 13^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 3^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} (-3)^k * 13^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n+1,n-k).
a(n) ~ 8 * n^(3/2) * 13^(n - 1/2) / sqrt(3*Pi). - Vaclav Kotesovec, Aug 24 2025
Showing 1-2 of 2 results.