cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163869 Binomial transform of the beta numbers 1/beta(n+1,n+1) (A002457).

Original entry on oeis.org

1, 7, 43, 249, 1395, 7653, 41381, 221399, 1175027, 6196725, 32512401, 169863147, 884318973, 4589954619, 23761814955, 122735222505, 632698778835, 3255832730565, 16728131746145, 85826852897675, 439793834236745, 2251006269442815, 11509340056410735, 58790764269668805
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Comments

Also a(n) = Sum_{i=0..n} binomial(n,n-i) (2*i+1)$ where i$ denotes the swinging factorial of i (A056040).

Crossrefs

Programs

  • Maple
    a := proc(n) local i; add(binomial(n,i)/Beta(i+1,i+1), i=0..n) end:
  • Mathematica
    CoefficientList[Series[-Sqrt[x-1]/(5*x-1)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 21 2012 *)
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Sum[ Binomial[n, n-i]*sf[2*i+1], {i, 0, n}]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 26 2013 *)
    Table[Hypergeometric2F1[3/2, -n, 1, -4], {n, 0, 20}] (* Vladimir Reshetnikov, Apr 25 2016 *)

Formula

From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: -sqrt(x-1)/(5*x-1)^(3/2).
Recurrence: n*a(n) = (6*n+1)*a(n-1) - 5*(n-1)*a(n-2).
a(n) ~ 4*5^(n-1/2)*sqrt(n)/sqrt(Pi).
(End)
a(n) = hypergeom([3/2, -n], [1], -4) = hypergeom([3/2, n+1], [1], 4/5)/(5*sqrt(5)). - Vladimir Reshetnikov, Apr 25 2016
E.g.f.: exp(3*x) * ((1 + 4*x) * BesselI(0,2*x) + 4 * x * BesselI(1,2*x)). - Ilya Gutkovskiy, Nov 19 2021
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k). (End)

A387229 Expansion of sqrt((1-x) / (1-9*x)^5).

Original entry on oeis.org

1, 22, 343, 4604, 56765, 662450, 7438515, 81174840, 866564025, 9090485390, 94014360143, 960890353076, 9723664642549, 97564323687082, 971756818248235, 9616894723897200, 94635806917660785, 926607762721058310, 9032093873432341575, 87685949210949054060, 848182216775168898861
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- x) / (1-9*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-9*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-x)/(1-9*x)^5))
    

Formula

n*a(n) = (10*n+12)*a(n-1) - 9*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 2^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} (-2)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n+1,n-k).
a(n) ~ 2^(7/2) * n^(3/2) * 3^(2*n-2) / sqrt(Pi). - Vaclav Kotesovec, Aug 24 2025

A387210 Expansion of sqrt((1-x) / (1-13*x)^3).

Original entry on oeis.org

1, 19, 307, 4645, 67843, 969337, 13643533, 189953659, 2622877075, 35982412921, 491057325577, 6672763735183, 90347244052429, 1219537191931975, 16418449380961891, 220534056531679141, 2956293832279184659, 39559312793250153577, 528522358385088314425, 7051193680459915645903
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt(((1-x) / (1-13*x)^3)); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-13*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sqrt((1-x)/(1-13*x)^3))
    

Formula

n*a(n) = (14*n+5)*a(n-1) - 13*(n-1)*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 13^k * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 3^k * (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-3)^k * 13^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k).
a(n) ~ 4 * sqrt(3*n) * 13^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, Aug 23 2025
Showing 1-3 of 3 results.