cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A163842 Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial transform. Same as interpolating the beta numbers 1/beta(n,n) (A002457) with (A163869). Triangle read by rows, for n >= 0, k >= 0.

Original entry on oeis.org

1, 7, 6, 43, 36, 30, 249, 206, 170, 140, 1395, 1146, 940, 770, 630, 7653, 6258, 5112, 4172, 3402, 2772, 41381, 33728, 27470, 22358, 18186, 14784, 12012, 221399, 180018, 146290, 118820, 96462, 78276, 63492, 51480
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Examples

			Triangle begins:
      1;
      7,     6;
     43,    36,    30;
    249,   206,   170,   140;
   1395,  1146,   940,   770,   630;
   7653,  6258,  5112,  4172,  3402,  2772;
  41381, 33728, 27470, 22358, 18186, 14784, 12012;
		

Crossrefs

Programs

  • Maple
    # Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
    a := n -> SumTria(k->swing(2*k+1),n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

Formula

T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*(2i+1)$ where i$ denotes the swinging factorial of i (A056040).

A387228 Expansion of sqrt((1-x) / (1-5*x)^5).

Original entry on oeis.org

1, 12, 103, 764, 5215, 33728, 210021, 1271504, 7532547, 43859460, 251809701, 1428911652, 8028877233, 44734340784, 247433518875, 1359902816880, 7432212863235, 40416897046740, 218812616979845, 1179889937796900, 6339243523221245, 33947223885549040, 181245459484155935
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- x) / (1-5*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-5*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-x)/(1-5*x)^5))
    

Formula

n*a(n) = (6*n+6)*a(n-1) - 5*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n+1,n-k).
a(n) ~ 8 * 5^(n - 1/2) * n^(3/2) / (3*sqrt(Pi)). - Vaclav Kotesovec, Aug 23 2025

A387208 Expansion of sqrt((1-x) / (1-9*x)^3).

Original entry on oeis.org

1, 13, 145, 1517, 15329, 151565, 1476465, 14228205, 135990465, 1291409165, 12199991633, 114761111789, 1075651464865, 10051341904141, 93677905064497, 871083359663085, 8083754402585985, 74885500462111245, 692624008942816785, 6397104350057979885, 59008673876627412321
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1-x) / (1-9*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-9*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-x)/(1-9*x)^3))
    

Formula

n*a(n) = (10*n+3)*a(n-1) - 9*(n-1)*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 2^k * (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-2)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k).
a(n) ~ 2^(5/2) * sqrt(n) * 3^(2*n-1) / sqrt(Pi). - Vaclav Kotesovec, Aug 23 2025

A387210 Expansion of sqrt((1-x) / (1-13*x)^3).

Original entry on oeis.org

1, 19, 307, 4645, 67843, 969337, 13643533, 189953659, 2622877075, 35982412921, 491057325577, 6672763735183, 90347244052429, 1219537191931975, 16418449380961891, 220534056531679141, 2956293832279184659, 39559312793250153577, 528522358385088314425, 7051193680459915645903
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt(((1-x) / (1-13*x)^3)); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-13*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sqrt((1-x)/(1-13*x)^3))
    

Formula

n*a(n) = (14*n+5)*a(n-1) - 13*(n-1)*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 13^k * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 3^k * (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-3)^k * 13^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k).
a(n) ~ 4 * sqrt(3*n) * 13^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, Aug 23 2025

A387211 Expansion of sqrt((1-2*x) / (1-6*x)^3).

Original entry on oeis.org

1, 8, 58, 400, 2678, 17584, 113892, 730272, 4646310, 29380912, 184867148, 1158418144, 7233806524, 45038743520, 279704675464, 1733203476288, 10718950211334, 66176597723184, 407931346057020, 2511127341708384, 15438601388617044, 94810212917983392, 581639541983344632
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 2*x) / (1-6*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-2*x)/(1-6*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-2*x)/(1-6*x)^3))
    

Formula

n*a(n) = 8*n*a(n-1) - 12*(n-1)*a(n-2) for n > 1.
a(n) = (1/2)^n * Sum_{k=0..n} 3^k * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 2^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 6^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k).

A387212 Expansion of sqrt((1-3*x) / (1-7*x)^3).

Original entry on oeis.org

1, 9, 75, 599, 4659, 35595, 268485, 2005785, 14873715, 109643195, 804354417, 5877232773, 42798735805, 310767250773, 2250899498763, 16267896905895, 117347641620435, 845043416086635, 6076092412278465, 43629213402099045, 312892629725930121, 2241442380182752209
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 3*x) / (1-7*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-3*x)/(1-7*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-3*x)/(1-7*x)^3))
    

Formula

n*a(n) = (10*n-1)*a(n-1) - 21*(n-1)*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 7^k * 3^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 3^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 7^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k).
Showing 1-6 of 6 results.