A163842
Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial transform. Same as interpolating the beta numbers 1/beta(n,n) (A002457) with (A163869). Triangle read by rows, for n >= 0, k >= 0.
Original entry on oeis.org
1, 7, 6, 43, 36, 30, 249, 206, 170, 140, 1395, 1146, 940, 770, 630, 7653, 6258, 5112, 4172, 3402, 2772, 41381, 33728, 27470, 22358, 18186, 14784, 12012, 221399, 180018, 146290, 118820, 96462, 78276, 63492, 51480
Offset: 0
Triangle begins:
1;
7, 6;
43, 36, 30;
249, 206, 170, 140;
1395, 1146, 940, 770, 630;
7653, 6258, 5112, 4172, 3402, 2772;
41381, 33728, 27470, 22358, 18186, 14784, 12012;
-
# Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
a := n -> SumTria(k->swing(2*k+1),n,true);
-
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
A387228
Expansion of sqrt((1-x) / (1-5*x)^5).
Original entry on oeis.org
1, 12, 103, 764, 5215, 33728, 210021, 1271504, 7532547, 43859460, 251809701, 1428911652, 8028877233, 44734340784, 247433518875, 1359902816880, 7432212863235, 40416897046740, 218812616979845, 1179889937796900, 6339243523221245, 33947223885549040, 181245459484155935
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- x) / (1-5*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
-
CoefficientList[Series[Sqrt[(1-x)/(1-5*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-x)/(1-5*x)^5))
A387208
Expansion of sqrt((1-x) / (1-9*x)^3).
Original entry on oeis.org
1, 13, 145, 1517, 15329, 151565, 1476465, 14228205, 135990465, 1291409165, 12199991633, 114761111789, 1075651464865, 10051341904141, 93677905064497, 871083359663085, 8083754402585985, 74885500462111245, 692624008942816785, 6397104350057979885, 59008673876627412321
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1-x) / (1-9*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
-
CoefficientList[Series[Sqrt[(1-x)/(1-9*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-x)/(1-9*x)^3))
A387210
Expansion of sqrt((1-x) / (1-13*x)^3).
Original entry on oeis.org
1, 19, 307, 4645, 67843, 969337, 13643533, 189953659, 2622877075, 35982412921, 491057325577, 6672763735183, 90347244052429, 1219537191931975, 16418449380961891, 220534056531679141, 2956293832279184659, 39559312793250153577, 528522358385088314425, 7051193680459915645903
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := Sqrt(((1-x) / (1-13*x)^3)); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
-
CoefficientList[Series[Sqrt[(1-x)/(1-13*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(sqrt((1-x)/(1-13*x)^3))
A387211
Expansion of sqrt((1-2*x) / (1-6*x)^3).
Original entry on oeis.org
1, 8, 58, 400, 2678, 17584, 113892, 730272, 4646310, 29380912, 184867148, 1158418144, 7233806524, 45038743520, 279704675464, 1733203476288, 10718950211334, 66176597723184, 407931346057020, 2511127341708384, 15438601388617044, 94810212917983392, 581639541983344632
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 2*x) / (1-6*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
-
CoefficientList[Series[Sqrt[(1-2*x)/(1-6*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-2*x)/(1-6*x)^3))
A387212
Expansion of sqrt((1-3*x) / (1-7*x)^3).
Original entry on oeis.org
1, 9, 75, 599, 4659, 35595, 268485, 2005785, 14873715, 109643195, 804354417, 5877232773, 42798735805, 310767250773, 2250899498763, 16267896905895, 117347641620435, 845043416086635, 6076092412278465, 43629213402099045, 312892629725930121, 2241442380182752209
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 3*x) / (1-7*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
-
CoefficientList[Series[Sqrt[(1-3*x)/(1-7*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-3*x)/(1-7*x)^3))
Showing 1-6 of 6 results.