cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386621 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*k*x - 4*x^2).

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 1, 4, 8, 0, 1, 6, 26, 32, 6, 1, 8, 56, 184, 136, 0, 1, 10, 98, 576, 1366, 592, 20, 1, 12, 152, 1328, 6216, 10424, 2624, 0, 1, 14, 218, 2560, 18886, 68976, 80996, 11776, 70, 1, 16, 296, 4392, 45256, 276208, 779456, 637424, 53344, 0
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Examples

			Square array begins:
   1,    1,     1,      1,       1,        1,        1, ...
   0,    2,     4,      6,       8,       10,       12, ...
   2,    8,    26,     56,      98,      152,      218, ...
   0,   32,   184,    576,    1328,     2560,     4392, ...
   6,  136,  1366,   6216,   18886,    45256,    92886, ...
   0,  592, 10424,  68976,  276208,   822800,  2020392, ...
  20, 2624, 80996, 779456, 4114004, 15235520, 44758244, ...
		

Crossrefs

Columns k=0..3 give A126869, A006139, A098443, A387428.
Main diagonal gives A387430.

Programs

  • PARI
    a(n, k) = sum(j=0, n\2, (k^2+1)^j*(2*k)^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j));

Formula

A(n,k) = Sum_{j=0..n} (k-i)^j * (k+i)^(n-j) * binomial(n,j)^2, where i is the imaginary unit.
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-2*j) * binomial(2*(n-j),n-j) * binomial(n-j,j).
n*A(n,k) = 2*k*(2*n-1)*A(n-1,k) + 4*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} (k^2+1)^j * (2*k)^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
A(n,k) = [x^n] (1 + 2*k*x + (k^2+1)*x^2)^n.
E.g.f. of column k: exp(2*k*x) * BesselI(0, 2*sqrt(k^2+1)*x).

A098455 Expansion of 1/sqrt(1-4*x-36*x^2).

Original entry on oeis.org

1, 2, 24, 128, 1096, 7632, 60864, 461568, 3648096, 28551872, 226695424, 1799989248, 14380907776, 115126211072, 924791445504, 7444100947968, 60057602459136, 485388465196032, 3929580292706304, 31858982479331328, 258641677679947776, 2102242140708298752
Offset: 0

Views

Author

Paul Barry, Sep 08 2004

Keywords

Comments

Define Q(n,x) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(2(n-k),n) * x^(n-2k). Then a(n) = 3^n*Q(n,1/3). A084770(n) is 2^n*Q(n,1/2). Central coefficient of (1+2*x+10*x^2)^n.

Crossrefs

Cf. A387428.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-4*x-36*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-4*x-36*x^2)) \\ Joerg Arndt, May 11 2013

Formula

E.g.f.: exp(2*x) * BesselI(0, 2*sqrt(10)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*9^k.
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1) + 36*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ sqrt(50+5*sqrt(10))*(2+2*sqrt(10))^n/(10*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = Sum_{k=0..n} (1-3*i)^k * (1+3*i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.
a(n) = Sum_{k=0..floor(n/2)} 10^k * 2^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)
Showing 1-2 of 2 results.