cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A098443 Expansion of 1/sqrt(1-8*x-4*x^2).

Original entry on oeis.org

1, 4, 26, 184, 1366, 10424, 80996, 637424, 5064166, 40528984, 326251276, 2638751504, 21426682876, 174563719984, 1426219233416, 11681133293024, 95877105146246, 788433553532824, 6494463369141116, 53576199709855184
Offset: 0

Views

Author

Paul Barry, Sep 07 2004

Keywords

Comments

Binomial transform of A098444. Second binomial transform of A084770. Third binomial transform of A098264.

Examples

			G.f. = 1 + 4*x + 26*x^2 + 184*x^3 + 1366*x^4 + 10424*x^5 + 80996*x^6 + ...
		

Crossrefs

Column k=2 of A386621.

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1 - 8*x - 4*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 15 2012, updated Mar 21 2024 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-8*x-4*x^2)) \\ Joerg Arndt, May 11 2013

Formula

E.g.f.: exp(4*x) * BesselI(0, 2*sqrt(5)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k) * binomial(2(n-k), n) * 2^(n-2k).
D-finite with recurrence: n*a(n) = 4*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ sqrt(50+20*sqrt(5))*(4+2*sqrt(5))^n/(10*sqrt(Pi*n)). Equivalently, a(n) ~ 2^(n-1/2) * phi^(3*n + 3/2) / (5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Oct 15 2012, updated Mar 21 2024
G.f.: 1/(1 - 2*x*(2+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(2+x)/(k+1 - x*(2+x)*(2*k+2)*(4*k+3)/(2*x*(2+x)*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: Q(0), where Q(k) = 1 + 2*x*(x+2)*(4*k+1)/( 2*k+1 - x*(x+2)*(2*k+1)*(4*k+3)/(x*(x+2)*(4*k+3) + (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 16 2013
From Peter Bala, Mar 16 2024: (Start)
a(n) = (-2*i)^n * P(n, 2*i), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial.
Sum_{n >= 1} (-1)^(n+1)*4^n/(n*a(n-1)*a(n)) = 2*arctan(1/2) = 2*A073000. (End)
From Seiichi Manyama, Aug 29 2025: (Start)
a(n) = Sum_{k=0..n} (2-i)^k * (2+i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.
a(n) = Sum_{k=0..floor(n/2)} 5^k * 4^(n-2*k) * binomial(n,2*k) * binomial(2*k,k).
a(n) = [x^n] (1+4*x+5*x^2)^n. (End)

A387430 a(n) = Sum_{k=0..n} (n-i)^k * (n+i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.

Original entry on oeis.org

1, 2, 26, 576, 18886, 822800, 44758244, 2920443904, 222277449286, 19333107926208, 1891679562586252, 205658657276205056, 24594577004735218716, 3208651043895419972096, 453493188773477070618248, 69025100503218462336614400, 11256667883184684951198851654, 1958143582960886584057480612864
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Comments

Sum_{k=0..n} (n-i)^k * (n+i)^(n-k) * binomial(n,k) = 2^n * n^n. - Vaclav Kotesovec, Aug 29 2025

Crossrefs

Main diagonal of A386621.

Programs

  • Mathematica
    Join[{1}, Table[Sum[(n^2 + 1)^k * (2*n)^(n-2*k) * Binomial[n,2*k] * Binomial[2*k,k], {k,0,n/2}], {n,1,20}]] (* or *)
    Table[(I + n)^n Hypergeometric2F1[-n, -n, 1, (-I + n)/(I + n)], {n, 0, 20}] (* Vaclav Kotesovec, Aug 29 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, (n^2+1)^k*(2*n)^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} n^(n-2*k) * binomial(2*(n-k),n-k) * binomial(n-k,k).
a(n) = Sum_{k=0..floor(n/2)} (n^2+1)^k * (2*n)^(n-2*k) * binomial(n,2*k) * binomial(2*k,k).
a(n) = [x^n] (1 + 2*n*x + (n^2+1)*x^2)^n.
a(n) ~ 2^(2*n) * n^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, Aug 29 2025

A387428 Expansion of 1/sqrt(1 - 12*x - 4*x^2).

Original entry on oeis.org

1, 6, 56, 576, 6216, 68976, 779456, 8921856, 103098976, 1200177216, 14053176576, 165337030656, 1952904166656, 23143984805376, 275062611081216, 3277130498482176, 39128126836409856, 468065027383059456, 5608576020851019776, 67305503084237193216, 808786974964809035776
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Crossrefs

Column k=3 of A386621.

Programs

  • PARI
    a(n) = sum(k=0, n\2, 10^k*6^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k));

Formula

a(n) = Sum_{k=0..n} (3-i)^k * (3+i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(2*(n-k),n-k) * binomial(n-k,k).
n*a(n) = 6*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 10^k * 6^(n-2*k) * binomial(n,2*k) * binomial(2*k,k).
a(n) = [x^n] (1+6*x+10*x^2)^n.
E.g.f.: exp(6*x) * BesselI(0, 2*sqrt(10)*x).
a(n) ~ 2^(n - 3/4) * (3 + sqrt(10))^(n + 1/2) / (5^(1/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Aug 29 2025

A387466 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*x - (2*k*x)^2).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 14, 32, 70, 1, 2, 24, 68, 136, 252, 1, 2, 38, 128, 406, 592, 924, 1, 2, 56, 212, 1096, 2332, 2624, 3432, 1, 2, 78, 320, 2566, 7632, 13964, 11776, 12870, 1, 2, 104, 452, 5320, 20092, 60864, 83848, 53344, 48620
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Examples

			Square array begins:
    1,    1,     1,     1,      1,      1,       1, ...
    2,    2,     2,     2,      2,      2,       2, ...
    6,    8,    14,    24,     38,     56,      78, ...
   20,   32,    68,   128,    212,    320,     452, ...
   70,  136,   406,  1096,   2566,   5320,   10006, ...
  252,  592,  2332,  7632,  20092,  44752,   88092, ...
  924, 2624, 13964, 60864, 210524, 607424, 1523724, ...
		

Crossrefs

Columns k=0..4 give A000984, A006139, A084770, A098455, A098456.
Main diagonal gives A387467.
Cf. A386621.

Programs

  • PARI
    a(n, k) = sum(j=0, n\2, (k^2+1)^j*2^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j));

Formula

A(n,k) = Sum_{j=0..n} (1-k*i)^j * (1+k*i)^(n-j) * binomial(n,j)^2, where i is the imaginary unit.
A(n,k) = Sum_{j=0..floor(n/2)} k^(2*j) * binomial(2*(n-j),n-j) * binomial(n-j,j).
n*A(n,k) = 2*(2*n-1)*A(n-1,k) + 4*k^2*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} (k^2+1)^j * 2^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
A(n,k) = [x^n] (1 + 2*x + (k^2+1)*x^2)^n.
E.g.f. of column k: exp(2*x) * BesselI(0, 2*sqrt(k^2+1)*x).
Showing 1-4 of 4 results.