cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386621 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*k*x - 4*x^2).

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 1, 4, 8, 0, 1, 6, 26, 32, 6, 1, 8, 56, 184, 136, 0, 1, 10, 98, 576, 1366, 592, 20, 1, 12, 152, 1328, 6216, 10424, 2624, 0, 1, 14, 218, 2560, 18886, 68976, 80996, 11776, 70, 1, 16, 296, 4392, 45256, 276208, 779456, 637424, 53344, 0
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Examples

			Square array begins:
   1,    1,     1,      1,       1,        1,        1, ...
   0,    2,     4,      6,       8,       10,       12, ...
   2,    8,    26,     56,      98,      152,      218, ...
   0,   32,   184,    576,    1328,     2560,     4392, ...
   6,  136,  1366,   6216,   18886,    45256,    92886, ...
   0,  592, 10424,  68976,  276208,   822800,  2020392, ...
  20, 2624, 80996, 779456, 4114004, 15235520, 44758244, ...
		

Crossrefs

Columns k=0..3 give A126869, A006139, A098443, A387428.
Main diagonal gives A387430.

Programs

  • PARI
    a(n, k) = sum(j=0, n\2, (k^2+1)^j*(2*k)^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j));

Formula

A(n,k) = Sum_{j=0..n} (k-i)^j * (k+i)^(n-j) * binomial(n,j)^2, where i is the imaginary unit.
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-2*j) * binomial(2*(n-j),n-j) * binomial(n-j,j).
n*A(n,k) = 2*k*(2*n-1)*A(n-1,k) + 4*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} (k^2+1)^j * (2*k)^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
A(n,k) = [x^n] (1 + 2*k*x + (k^2+1)*x^2)^n.
E.g.f. of column k: exp(2*k*x) * BesselI(0, 2*sqrt(k^2+1)*x).

A387459 a(n) = Sum_{k=0..n} (n-i)^k * (n+i)^(n-k), where i is the imaginary unit.

Original entry on oeis.org

1, 2, 11, 96, 1121, 16280, 281987, 5666304, 129488641, 3315041568, 93958705499, 2920298135040, 98749216968481, 3608920706225536, 141743544911838547, 5953777300691189760, 266315973364196014081, 12638365012375994704384, 634207216217264733599531, 33552879853099295377612800
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 29 2025

Keywords

Crossrefs

Cf. A387430.

Programs

  • Magma
    C := ComplexField(); [Floor(Abs( ((1 + I*n)*(-I + n)^n + (1 - I*n)*(I + n)^n)/2)): n in [0..30]]; // Vincenzo Librandi, Aug 30 2025
  • Mathematica
    Table[Sum[(n-I)^k*(n+I)^(n-k), {k, 0, n}], {n, 0, 20}]
    (* or *)
    Table[((1 + I*n)*(-I + n)^n + (1 - I*n)*(I + n)^n)/2, {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, (n-I)^k * (n+I)^(n-k)); \\ Michel Marcus, Aug 30 2025
    

Formula

a(n) = ((1 + i*n)*(-i + n)^n + (1 - i*n)*(i + n)^n)/2, where i is the imaginary unit.
For n > 0, a(n) = (1 + n^2)^(n/2) * (cos(n*arctan(1/n)) + n*sin(n*arctan(1/n))).
a(n) ~ sin(1) * n^(n+1).

A387467 a(n) = Sum_{k=0..n} (1-n*i)^k * (1+n*i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.

Original entry on oeis.org

1, 2, 14, 128, 2566, 44752, 1523724, 39267328, 1893328966, 64541150912, 4029767542756, 170848520912896, 13100724115628956, 664175960969073152, 60396776494002647768, 3563049510869692907520, 374818464874078558810694, 25220474024437034383526912, 3012865557320147302034729844
Offset: 0

Author

Seiichi Manyama, Aug 29 2025

Keywords

Crossrefs

Main diagonal of A387466.
Cf. A387430.

Programs

  • Magma
    [(&+[n^(2*k) * Binomial(2*(n-k),n-k) * Binomial(n-k,k): k in [0..Floor(n/2)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[(n^2+1)^k*2^(n-2*k)*Binomial[n,2*k]*Binomial[2*k,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, (n^2+1)^k*2^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k));
    

Formula

a(n) = Sum_{k=0..floor(n/2)} n^(2*k) * binomial(2*(n-k),n-k) * binomial(n-k,k).
a(n) = Sum_{k=0..floor(n/2)} (n^2+1)^k * 2^(n-2*k) * binomial(n,2*k) * binomial(2*k,k).
a(n) = [x^n] (1 + 2*x + (n^2+1)*x^2)^n.
Showing 1-3 of 3 results.