cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A218554 Order of (6,n) cage, i.e., minimal order of 6-regular graph of girth n.

Original entry on oeis.org

7, 12, 40, 62
Offset: 3

Views

Author

Arkadiusz Wesolowski, Nov 02 2012

Keywords

Comments

a(7) <= 294, a(8) = 312, a(12) = 7812. - From Royle's page via Jason Kimberley, Dec 26 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), this sequence (6,n), A218555 (7,n), A191595 (n,5).

Formula

a(n) >= A198306(n).

Extensions

a(7) deleted by Jason Kimberley, Dec 21 2012

A218555 Order of (7,n) cage, i.e., minimal order of 7-regular graph of girth n.

Original entry on oeis.org

8, 14, 50, 90
Offset: 3

Views

Author

Arkadiusz Wesolowski, Nov 02 2012

Keywords

Comments

a(8) <= 658, a(12) <= 32928. - Jason Kimberley, Dec 29 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), this sequence (7,n), A191595 (n,5).

Formula

a(n) >= A198307(n).

Extensions

Edited by Jason Kimberley, Dec 21 2012

A185130 Irregular triangle E(n,g) counting not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 1, 4, 2, 15, 5, 1, 71, 21, 2, 428, 103, 8, 1, 3406, 752, 48, 1, 34270, 7385, 450, 5, 418621, 91939, 5752, 32, 5937051, 1345933, 90555, 385, 94782437, 22170664, 1612917, 7573, 1, 1670327647, 401399440, 31297424, 181224, 3, 32090011476, 7887389438
Offset: 2

Views

Author

Jason Kimberley, Dec 26 2012

Keywords

Comments

The first column is for girth exactly 3. The column for girth exactly g begins when 2n reaches A000066(g).

Examples

			1;
1, 1;
4, 2;
15, 5, 1;
71, 21, 2;
428, 103, 8, 1;
3406, 752, 48, 1;
34270, 7385, 450, 5;
418621, 91939, 5752, 32;
5937051, 1345933, 90555, 385;
94782437, 22170664, 1612917, 7573, 1;
1670327647, 401399440, 31297424, 181224, 3;
32090011476, 7887389438, 652159986, 4624481, 21;
666351752261, 166897766824, 14499787794, 122089999, 545, 1;
14859579573845, 3781593764772, 342646826428, 3328899592, 30368, 0;
		

Crossrefs

Initial columns of this triangle: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

The n-th row is the sequence of differences of the n-th row of A185330:
E(n,g) = A185330(n,g) - A185330(n,g+1), once we have appended 0 to each row of A185330.
Hence the sum of the n-th row is A185330(n,3) = A005638(n).

A185330 Irregular triangle E(n,g) counting not necessarily connected 3-regular simple graphs on 2n vertices with girth at least g.

Original entry on oeis.org

1, 2, 1, 6, 2, 21, 6, 1, 94, 23, 2, 540, 112, 9, 1, 4207, 801, 49, 1, 42110, 7840, 455, 5, 516344, 97723, 5784, 32, 7373924, 1436873, 90940, 385, 118573592, 23791155, 1620491, 7574, 1, 2103205738, 432878091, 31478651, 181227, 3, 40634185402
Offset: 2

Views

Author

Jason Kimberley, Oct 18 2012

Keywords

Comments

The first column is for girth at least 3. The row length is incremented to g-2 when 2n reaches A000066(g).

Examples

			1;
2, 1;
6, 2;
21, 6, 1;
94, 23, 2;
540, 112, 9, 1;
4207, 801, 49, 1;
42110, 7840, 455, 5;
516344, 97723, 5784, 32;
7373924, 1436873, 90940, 385;
118573592, 23791155, 1620491, 7574, 1;
2103205738, 432878091, 31478651, 181227, 3;
40634185402, 8544173926, 656784488, 4624502, 21;
847871397424, 181519645163, 14621878339, 122090545, 546, 1;
18987149095005, 4127569521160, 345975756388, 3328929960, 30368, 0;
		

Crossrefs

A210709 Number of trivalent connected simple graphs with 2n nodes and girth at least 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18
Offset: 0

Views

Author

Jason Kimberley, Dec 20 2012

Keywords

Crossrefs

Trivalent simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8), this sequence (g=9).
Trivalent simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).

Formula

a(29) = a(A000066(9)/2) = A052453(9) = 18 is the number of (3,9) cages.

A375619 a(n) is the largest integer such that there exists a simple graph with n vertices, a(n) edges, and no cycles of length 0 mod 4.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 57, 58, 60, 61, 63, 64, 66, 68, 69, 71, 72, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 95, 96, 98, 99, 101, 102
Offset: 1

Views

Author

Luc Ta, Aug 21 2024

Keywords

Comments

In the parlance of extremal graph theory, a(n) is the extremal number ex(n, C_(0 mod 4)).

Examples

			For n = 4, any simple graph with 4 vertices and 5 edges contains a cycle of length 4 == 0 (mod 4), so a(4) < 5. There are exactly two nonisomorphic graphs with 4 vertices and 4 edges. One of them has no cycles of any length other than 3, so a(4) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[19/12 * (n - 1)], {n, 100}]

Formula

a(n) = floor(19/12(n-1)). See Győri et al. in Links.
a(n) = A172272(n-1) for all n <= 77; then a(78) = 121 != 122 = A172272(77).
a(n) = A056576(n-1) for all n <= 53; then a(54) = 83 != 84 = A056576(53).

A266731 Smallest number of vertices in bi-regular ({3,4};n) graph with girth (shortest cycle) = n.

Original entry on oeis.org

7, 13, 18, 29, 39, 61, 82, 125
Offset: 4

Views

Author

N. J. A. Sloane, Jan 04 2016

Keywords

Crossrefs

Previous Showing 11-17 of 17 results.