A054760
Table T(n,k) = order of (n,k)-cage (smallest n-regular graph of girth k), n >= 2, k >= 3, read by antidiagonals.
Original entry on oeis.org
3, 4, 4, 5, 6, 5, 6, 8, 10, 6, 7, 10, 19, 14, 7, 8, 12, 30, 26, 24, 8, 9, 14, 40, 42, 67, 30, 9, 10, 16, 50, 62
Offset: 0
First eight antidiagonals are:
3 4 5 6 7 8 9 10
4 6 10 14 24 30 58
5 8 19 26 67 80
6 10 30 42 ?
7 12 40 62
8 14 50
9 16
10
- P. R. Christopher, Degree monotonicity of cages, Graph Theory Notes of New York, 38 (2000), 29-32.
- Andries E. Brouwer, Cages
- M. Daven and C. A. Rodger, (k,g)-cages are 3-connected, Discr. Math., 199 (1999), 207-215.
- Geoff Exoo, Regular graphs of given degree and girth
- G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011).
- Gordon Royle, Cubic Cages
- Gordon Royle, Cages of higher valency
- Pak Ken Wong, Cages-a survey, J. Graph Theory 6 (1982), no. 1, 1-22.
Orders of cages: this sequence (n,k),
A000066 (3,n),
A037233 (4,n),
A218553 (5,n),
A218554 (6,n),
A218555 (7,n),
A191595 (n,5).
Edited by
Jason Kimberley, Apr 25 2010, Oct 26 2011, Dec 21 2012, Jan 01 2013
A000066
Smallest number of vertices in trivalent graph with girth (shortest cycle) = n.
Original entry on oeis.org
4, 6, 10, 14, 24, 30, 58, 70, 112, 126
Offset: 3
- A. T. Balaban, Trivalent graphs of girth nine and eleven and relationships among cages, Rev. Roum. Math. Pures et Appl. 18 (1973) 1033-1043.
- Brendan McKay, personal communication.
- H. Sachs, On regular graphs with given girth, pp. 91-97 of M. Fiedler, editor, Theory of Graphs and Its Applications: Proceedings of the Symposium, Smolenice, Czechoslovakia, 1963. Academic Press, NY, 1964.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Gabriela Araujo-Pardo, Geoffrey Exoo, and Robert Jajcay, Small bi-regular graphs of even girth Discrete Mathematics 339.2 (2016): 658-667.
- Andries E. Brouwer, Cages
- Geoff Exoo, Regular graphs of given degree and girth
- G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011).
- Brendan McKay, W. Myrvold and J. Nadon, Fast backtracking principles applied to find new cages, 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, 188-191.
- M. O'Keefe and P. K. Wong, A smallest graph of girth 10 and valency 3, J. Combin. Theory, B 29 (1980), 91-105.
- Gordon Royle, Cubic Cages
- Eric Weisstein's World of Mathematics, Cage Graph
- Pak Ken Wong, Cages-a survey, J. Graph Theory 6 (1982), no. 1, 1-22.
Orders of cages:
A054760 (n,k), this sequence (3,n),
A037233 (4,n),
A218553 (5,n),
A218554 (6,n),
A218555 (7,n),
A191595 (n,5).
Balaban proved 112 as an upper bound for a(11). The proof that it is also a lower bound is in the paper by
Brendan McKay, W. Myrvold and J. Nadon.
A198306
Moore lower bound on the order of a (6,g)-cage.
Original entry on oeis.org
7, 12, 37, 62, 187, 312, 937, 1562, 4687, 7812, 23437, 39062, 117187, 195312, 585937, 976562, 2929687, 4882812, 14648437, 24414062, 73242187, 122070312, 366210937, 610351562, 1831054687, 3051757812, 9155273437, 15258789062
Offset: 3
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5), this sequence (k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7).
-
LinearRecurrence[{1,5,-5},{7,12,37},30] (* Harvey P. Dale, Jun 28 2015 *)
A037233
Order of (4,n) cage, i.e., minimal order of 4-regular graph of girth n.
Original entry on oeis.org
5, 8, 19, 26, 67, 80
Offset: 3
Orders of cages:
A054760 (n,k),
A000066 (3,n), this sequence (4,n),
A218553 (5,n),
A218554 (6,n),
A218555 (7,n),
A191595 (n,5).
A191595
Order of smallest n-regular graph of girth 5.
Original entry on oeis.org
5, 10, 19, 30, 40, 50
Offset: 2
- M. Abreu et al., A family of regular graphs of girth 5, Discrete Math., 308 (2008), 1810-1815.
- Andries E. Brouwer, Cages
- Geoff Exoo, Regular graphs of given degree and girth
- G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011).
- G. Royle, Cages of higher valency
Orders of cages:
A054760 (n,k),
A000066 (3,n),
A037233 (4,n),
A218553 (5,n),
A218554 (6,n),
A218555 (7,n), this sequence (n,5).
Moore lower bound on the orders of (k,g) cages:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5),
A198306(k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7). -
Jason Kimberley, Nov 02 2011
A218553
Order of (5,n) cage, i.e., minimal order of 5-regular graph of girth n.
Original entry on oeis.org
Orders of cages:
A054760 (n,k),
A000066 (3,n),
A037233 (4,n), this sequence (5,n),
A218554 (6,n),
A218555 (7,n),
A191595 (n,5).
A218555
Order of (7,n) cage, i.e., minimal order of 7-regular graph of girth n.
Original entry on oeis.org
Orders of cages:
A054760 (n,k),
A000066 (3,n),
A037233 (4,n),
A218553 (5,n),
A218554 (6,n), this sequence (7,n),
A191595 (n,5).
Showing 1-7 of 7 results.
Comments