cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A062318 Numbers of the form 3^m - 1 or 2*3^m - 1; i.e., the union of sequences A048473 and A024023.

Original entry on oeis.org

0, 1, 2, 5, 8, 17, 26, 53, 80, 161, 242, 485, 728, 1457, 2186, 4373, 6560, 13121, 19682, 39365, 59048, 118097, 177146, 354293, 531440, 1062881, 1594322, 3188645, 4782968, 9565937, 14348906, 28697813, 43046720, 86093441, 129140162
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 05 2001

Keywords

Comments

WARNING: The offset of this sequence has been changed from 0 to 1 without correcting the formulas and programs, many of them correspond to the original indexing a(0)=0, a(1)=1, ... - M. F. Hasler, Oct 06 2014
Numbers n such that no entry in n-th row of Pascal's triangle is divisible by 3, i.e., such that A062296(n) = 0.
The base 3 representation of these numbers is 222...222 or 122...222.
a(n+1) is the smallest number with ternary digit sum = n: A053735(a(n+1)) = n and A053735(m) <> n for m < a(n+1). - Reinhard Zumkeller, Sep 15 2006
A138002(a(n)) = 0. - Reinhard Zumkeller, Feb 26 2008
Also, number of terms in S(n), where S(n) is defined in A114482. - N. J. A. Sloane, Nov 13 2014
a(n+1) is also the Moore lower bound on the order of a (4,g)-cage. - Jason Kimberley, Oct 30 2011

Examples

			The first rows in Pascal's triangle with no multiples of 3 are:
row 0: 1;
row 1: 1, 1;
row 2: 1, 2,  1;
row 5: 1, 5, 10, 10,  5,  1;
row 8: 1, 8, 28, 56, 70, 56, 28, 8, 1;
		

Crossrefs

Cf. A062296, A024023, A048473, A114482. Pairwise sums of A052993.
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), this sequence (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A037233 (actual order of a (4,g)-cage).
Smallest number whose base b sum of digits is n: A000225 (b=2), this sequence (b=3), A180516 (b=4), A181287 (b=5), A181288 (b=6), A181303 (b=7), A165804 (b=8), A140576 (b=9), A051885 (b=10).

Programs

  • Magma
    I:=[0,1,2]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2) -3*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Apr 20 2012
    
  • Maple
    A062318 :=proc(n)
        if n mod 2 = 1 then
            3^((n-1)/2)-1
        else
            2*3^(n/2-1)-1
        fi
    end proc:
    seq(A062318(n), n=1..37); # Emeric Deutsch, Feb 03 2005, offset updated
  • Mathematica
    CoefficientList[Series[x^2*(1+x)/((1-x)*(1-3*x^2)),{x,0,40}],x] (* Vincenzo Librandi, Apr 20 2012 *)
    A062318[n_]:= (1/3)*(Boole[n==0] -3 +3^(n/2)*(2*Mod[n+1,2] +Sqrt[3] *Mod[n, 2]));
    Table[A062318[n], {n, 50}] (* G. C. Greubel, Apr 17 2023 *)
  • PARI
    a(n)=3^(n\2)<M. F. Hasler, Oct 06 2014
    
  • SageMath
    def A062318(n): return (1/3)*(int(n==0) - 3 + 2*((n+1)%2)*3^(n/2) + (n%2)*3^((n+1)/2))
    [A062318(n) for n in range(1,41)] # G. C. Greubel, Apr 17 2023

Formula

a(n) = 2*3^(n/2-1)-1 if n is even; a(n) = 3^(n/2-1/2)-1 if n is odd. - Emeric Deutsch, Feb 03 2005, offset updated.
From Paul Curtz, Feb 21 2008: (Start)
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3).
Partial sums of A108411. (End)
G.f.: x^2*(1+x)/((1-x)*(1-3*x^2)). - Colin Barker, Apr 02 2012
a(2n+1) = 3*a(2n-1) + 2; a(2n) = ( a(2n-1) + a(2n+1) )/2. See A060647 for case where a(1)= 1. - Richard R. Forberg, Nov 30 2013
a(n) = 2^((1+(-1)^n)/2) * 3^((2*n-3-(-1)^n)/4) - 1. - Luce ETIENNE, Aug 29 2014
a(n) = A052993(n-1) + A052993(n-2). - R. J. Mathar, Sep 10 2021
E.g.f.: (1 - 3*cosh(x) + 2*cosh(sqrt(3)*x) - 3*sinh(x) + sqrt(3)*sinh(sqrt(3)*x))/3. - Stefano Spezia, Apr 06 2022
a(n) = (1/3)*([n=0] - 3 + (1+(-1)^n)*3^(n/2) + ((1-(-1)^n)/2)*3^((n+1)/2)). - G. C. Greubel, Apr 17 2023

Extensions

More terms from Emeric Deutsch, Feb 03 2005
Entry revised by N. J. A. Sloane, Jul 29 2011

A054760 Table T(n,k) = order of (n,k)-cage (smallest n-regular graph of girth k), n >= 2, k >= 3, read by antidiagonals.

Original entry on oeis.org

3, 4, 4, 5, 6, 5, 6, 8, 10, 6, 7, 10, 19, 14, 7, 8, 12, 30, 26, 24, 8, 9, 14, 40, 42, 67, 30, 9, 10, 16, 50, 62
Offset: 0

Views

Author

N. J. A. Sloane, Apr 26 2000

Keywords

Examples

			First eight antidiagonals are:
   3  4  5  6  7  8  9 10
   4  6 10 14 24 30 58
   5  8 19 26 67 80
   6 10 30 42  ?
   7 12 40 62
   8 14 50
   9 16
  10
		

References

  • P. R. Christopher, Degree monotonicity of cages, Graph Theory Notes of New York, 38 (2000), 29-32.

Crossrefs

Moore lower bound: A198300.
Orders of cages: this sequence (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), A191595 (n,5).
Graphs not required to be regular: A006787, A006856.

Formula

T(k,g) >= A198300(k,g) with equality if and only if: k = 2 and g >= 3; g = 3 and k >= 2; g = 4 and k >= 2; g = 5 and k = 2, 3, 7 or possibly 57; or g = 6, 8, or 12, and there exists a symmetric generalized g/2-gon of order k - 1. - Jason Kimberley, Jan 01 2013

Extensions

Edited by Jason Kimberley, Apr 25 2010, Oct 26 2011, Dec 21 2012, Jan 01 2013

A000066 Smallest number of vertices in trivalent graph with girth (shortest cycle) = n.

Original entry on oeis.org

4, 6, 10, 14, 24, 30, 58, 70, 112, 126
Offset: 3

Views

Author

Keywords

Comments

Also called the order of the (3,n) cage graph.
Recently (unpublished) McKay and Myrvold proved that the minimal graph on 112 vertices is unique. - May 20 2003
If there are n vertices and e edges, then 3n=2e, so n is always even.
Current lower bounds for a(13)..a(32) are 202, 258, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072. - from Table 3 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012
Current upper bounds for a(13)..a(32) are 272, 384, 620, 960, 2176, 2560, 4324, 5376, 16028, 16206, 49326, 49608, 108906, 109200, 285852, 415104, 1141484, 1143408, 3649794, 3650304. - from Table 3 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012

References

  • A. T. Balaban, Trivalent graphs of girth nine and eleven and relationships among cages, Rev. Roum. Math. Pures et Appl. 18 (1973) 1033-1043.
  • Brendan McKay, personal communication.
  • H. Sachs, On regular graphs with given girth, pp. 91-97 of M. Fiedler, editor, Theory of Graphs and Its Applications: Proceedings of the Symposium, Smolenice, Czechoslovakia, 1963. Academic Press, NY, 1964.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006787, A052453 (number of such graphs).
Orders of cages: A054760 (n,k), this sequence (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), A191595 (n,5).

Formula

For all g > 2, a(g) >= A027383(g-1), with equality if and only if g = 3, 4, 5, 6, 8, or 12. - Jason Kimberley, Dec 21 2012 and Jan 01 2013

Extensions

Additional comments from Matthew Cook, May 15 2003
Balaban proved 112 as an upper bound for a(11). The proof that it is also a lower bound is in the paper by Brendan McKay, W. Myrvold and J. Nadon.

A184940 Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 2, 5, 1, 16, 0, 57, 2, 263, 2, 1532, 12, 10747, 31, 87948, 220, 803885, 1606, 8020590, 16828, 86027734, 193900, 983417704, 2452818, 11913817317, 32670329, 1, 152352034707, 456028472, 2, 2050055948375, 6636066091, 8, 28466137588780, 100135577616, 131
Offset: 5

Views

Author

Jason Kimberley, Feb 24 2011

Keywords

Comments

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4. The row length is incremented to g-2 when n reaches A037233(g).

Examples

			1;
1;
2;
5, 1;
16, 0;
57, 2;
263, 2;
1532, 12;
10747, 31;
87948, 220;
803885, 1606;
8020590, 16828;
86027734, 193900;
983417704, 2452818;
11913817317, 32670329, 1;
152352034707, 456028472, 2;
2050055948375, 6636066091, 8;
28466137588780, 100135577616, 131;
		

Crossrefs

Connected 4-regular simple graphs with girth at least g: A184941 (triangle); chosen g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184943 (g=3), A184944 (g=4), A184945 (g=5), A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), this sequence (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).

A184941 Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth at least g.

Original entry on oeis.org

1, 1, 2, 6, 1, 16, 0, 59, 2, 265, 2, 1544, 12, 10778, 31, 88168, 220, 805491, 1606, 8037418, 16828, 86221634, 193900, 985870522, 2452818, 11946487647, 32670330, 1, 152808063181, 456028474, 2, 2056692014474, 6636066099, 8, 28566273166527, 100135577747, 131
Offset: 5

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4. The row length is incremented to g-2 when n reaches A037233(g).

Examples

			1;
1;
2;
6, 1;
16, 0;
59, 2;
265, 2;
1544, 12;
10778, 31;
88168, 220;
805491, 1606;
8037418, 16828;
86221634, 193900;
985870522, 2452818;
11946487647, 32670330, 1;
152808063181, 456028474, 2;
2056692014474, 6636066099, 8;
28566273166527, 100135577747, 131;
		

Crossrefs

Connected 4-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: A184940 (triangle); chosen g: A184943 (g=3), A184944 (g=4), A184945 (g=5), A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), this sequence (k=4), A184951 (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8).

A191595 Order of smallest n-regular graph of girth 5.

Original entry on oeis.org

5, 10, 19, 30, 40, 50
Offset: 2

Views

Author

N. J. A. Sloane, Jun 07 2011

Keywords

Comments

Current upper bounds for a(8)..a(20) are 80, 96, 124, 154, 203, 230, 288, 312, 336, 448, 480, 512, 576. - Corrected from "Lower" to "Upper" and updated, from Table 4 of the Dynamic cage survey, by Jason Kimberley, Dec 29 2012
Current lower bounds for a(8)..a(20) are 67, 86, 103, 124, 147, 174, 199, 230, 259, 294, 327, 364, 403. - from Table 4 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), this sequence (n,5).
Moore lower bound on the orders of (k,g) cages: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306(k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10),A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Nov 02 2011

Formula

a(n) >= A002522(n) with equality if and only if n = 2, 3, 7 or possibly 57. - Jason Kimberley, Nov 02 2011

Extensions

a(2) = 5 prepended by Jason Kimberley, Jan 02 2013

A218553 Order of (5,n) cage, i.e., minimal order of 5-regular graph of girth n.

Original entry on oeis.org

6, 10, 30, 42
Offset: 3

Views

Author

Arkadiusz Wesolowski, Nov 02 2012

Keywords

Comments

a(7) <= 152, a(8) = 170, a(12) = 2730. - From Royle's page via Jason Kimberley, Dec 21 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), this sequence (5,n), A218554 (6,n), A218555 (7,n), A191595 (n,5).

Formula

a(n) >= A061547(n+1).

Extensions

a(7) deleted by Jason Kimberley, Dec 21 2012

A218554 Order of (6,n) cage, i.e., minimal order of 6-regular graph of girth n.

Original entry on oeis.org

7, 12, 40, 62
Offset: 3

Views

Author

Arkadiusz Wesolowski, Nov 02 2012

Keywords

Comments

a(7) <= 294, a(8) = 312, a(12) = 7812. - From Royle's page via Jason Kimberley, Dec 26 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), this sequence (6,n), A218555 (7,n), A191595 (n,5).

Formula

a(n) >= A198306(n).

Extensions

a(7) deleted by Jason Kimberley, Dec 21 2012

A218555 Order of (7,n) cage, i.e., minimal order of 7-regular graph of girth n.

Original entry on oeis.org

8, 14, 50, 90
Offset: 3

Views

Author

Arkadiusz Wesolowski, Nov 02 2012

Keywords

Comments

a(8) <= 658, a(12) <= 32928. - Jason Kimberley, Dec 29 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), this sequence (7,n), A191595 (n,5).

Formula

a(n) >= A198307(n).

Extensions

Edited by Jason Kimberley, Dec 21 2012

A185140 Irregular triangle E(n,g) counting not necessarily connected 4-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 2, 5, 1, 16, 0, 58, 2, 264, 2, 1535, 12, 10755, 31, 87973, 220, 803973, 1606, 8020967, 16829, 86029760, 193900, 983431053, 2452820, 11913921910, 32670331, 1, 152352965278, 456028487, 2, 2050065073002, 6636066126, 8, 28466234288520, 100135577863, 131, 8020967, 16829
Offset: 5

Views

Author

Jason Kimberley, Jan 06 2013

Keywords

Comments

The first column is for girth at least 3. The column for girth g commences when n reaches A037233(g).

Examples

			05: 1;
06: 1;
07: 2;
08: 5, 1;
09: 16, 0;
10: 58, 2;
11: 264, 2;
12: 1535, 12;
13: 10755, 31;
14: 87973, 220;
15: 803973, 1606;
16: 8020967, 16829;
17: 86029760, 193900;
18: 983431053, 2452820;
19: 11913921910, 32670331, 1;
20: 152352965278, 456028487, 2;
21: 2050065073002, 6636066126, 8;
22: 28466234288520, 100135577863, 131;
		

Crossrefs

Initial columns of this triangle: A185143 (g=3), A185144 (g=4).

Formula

The n-th row is the sequence of differences of the n-th row of A185340:
E(n,g) = A185340(n,g) - A185340(n,g+1), once we have appended 0 to each row of A185340.
Hence the sum of the n-th row is A185340(n,3) = A033301(n).
Showing 1-10 of 11 results. Next