cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 693 results. Next

A216649 Triangle T(n,k) in which n-th row lists in increasing order all positive integers with a representation as totally balanced 2n digit binary string such that all consecutive totally balanced substrings are in nondecreasing order; n>=1, 1<=k<=A000081(n+1).

Original entry on oeis.org

2, 10, 12, 42, 44, 52, 56, 170, 172, 180, 184, 204, 212, 216, 232, 240, 682, 684, 692, 696, 716, 724, 728, 744, 752, 820, 824, 852, 856, 872, 880, 920, 936, 944, 976, 992, 2730, 2732, 2740, 2744, 2764, 2772, 2776, 2792, 2800, 2868, 2872, 2900, 2904, 2920, 2928
Offset: 1

Views

Author

Alois P. Heinz, Sep 12 2012

Keywords

Comments

There is a simple bijection between the elements of row n and the rooted trees with n+1 nodes. The tree has a root node. Each matching pair (1,0) in the binary string representation encodes an additional node, the totally balanced substrings encode lists of subtrees.

Examples

			172 is element of row 4, the binary string representation (with totally balanced substrings enclosed in parentheses) is (10)(10)(1(10)0).  The encoded rooted tree is:
.    o
.   /|\
.  o o o
.      |
.      o
Triangle T(n,k) begins:
2;
10,     12;
42,     44,   52,   56;
170,   172,  180,  184,  204,  212,  216,  232,  240;
682,   684,  692,  696,  716,  724,  728,  744,  752,  820,  824, ...
2730, 2732, 2740, 2744, 2764, 2772, 2776, 2792, 2800, 2868, 2872, ...
Triangle T(n,k) in binary:
10;
1010,       1100;
101010,     101100,     110100,     111000;
10101010,   10101100,   10110100,   10111000,   11001100,   11010100, ...
1010101010, 1010101100, 1010110100, 1010111000, 1011001100, 1011010100, ...
		

Crossrefs

First column gives: A020988.
Last elements of rows give: A020522.
Row lengths are: A000081(n+1).
Subsequence of A014486, A031443.

Programs

  • Maple
    F:= proc(n) option remember; `if`(n=1, [10], sort(map(h->
          parse(cat(1, sort(h)[], 0)), g(n-1, n-1)))) end:
    g:= proc(n, i) option remember; `if`(i=1, [[10$n]], [seq(seq(seq(
          [seq (F(i)[w[t]-t+1], t=1..j),v[]], w=combinat[choose](
          [$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
        end:
    b:= proc(n) local h, i, r; h, r:= n/10, 0; for i from 0
          while h>1 do r:= r+2^i*irem(h, 10, 'h') od; r
        end:
    T:= proc(n) option remember; map(b, F(n+1))[] end:
    seq(T(n), n=1..6);

Formula

T(n,k) = A216648(n+1,k)/2 - 2^(2*n).

A258592 Values of k such that the number of rooted trees with k nodes (A000081(k)) is even.

Original entry on oeis.org

0, 3, 4, 6, 7, 9, 11, 12, 13, 19, 20, 21, 24, 26, 29, 31, 32, 34, 36, 37, 39, 41, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 66, 69, 70, 72, 79, 80, 81, 83, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107
Offset: 1

Views

Author

Vladimir Reshetnikov, Nov 06 2015

Keywords

Comments

Complement of A263831.

Crossrefs

Programs

  • Mathematica
    Module[{t}, t[1] = 1; t[k_] := t[k] = Sum[DivisorSum[k-m, t[#] # &] t[m]/(k-1), {m, k-1}]; Select[Range[0, 107], EvenQ@t[#] &]] (* after Alois P. Heinz *)

A263831 Values of k such that the number of rooted trees with k nodes (A000081(k)) is odd.

Original entry on oeis.org

1, 2, 5, 8, 10, 14, 15, 16, 17, 18, 22, 23, 25, 27, 28, 30, 33, 35, 38, 40, 42, 49, 50, 56, 61, 64, 65, 67, 68, 71, 73, 74, 75, 76, 77, 78, 82, 84, 87, 93, 98, 99, 104, 108, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 127, 128, 135, 137, 138, 139
Offset: 1

Views

Author

Vladimir Reshetnikov, Nov 03 2015

Keywords

Comments

Complement of A258592.

Crossrefs

Programs

  • Mathematica
    Module[{t}, t[1] = 1; t[k_] := t[k] = Sum[DivisorSum[k-m, t[#] # &] t[m]/(k-1), {m, k-1}]; Select[Range[140], OddQ@t[#] &]] (* after Alois P. Heinz *)

A339984 G.f.: g(x) * g(x^2), where g(x) is the g.f. of A000081.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 5, 13, 26, 65, 147, 369, 899, 2298, 5851, 15261, 39945, 105948, 282504, 759480, 2052027, 5576017, 15216998, 41705762, 114715503, 316611401, 876466003, 2433091773, 6771462322, 18889829555, 52809592990, 147935027381, 415182991401, 1167251435240
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 30; A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2*k), {k, 1, max}]; CoefficientList[Series[g81 * g81x2, {x, 0, max}], x]

Formula

a(n) ~ A339986 * A051491^n / n^(3/2).

A339985 G.f.: g(x)^2 * g(x^2), where g(x) is the g.f. of A000081.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 14, 37, 90, 232, 584, 1512, 3906, 10246, 26984, 71766, 191852, 516400, 1396760, 3797435, 10367628, 28420466, 78183462, 215791426, 597368222, 1658233794, 4614679792, 12872125836, 35982713314, 100787606966, 282832173830, 795070060983
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 30; A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2*k), {k, 1, max}]; CoefficientList[Series[g81^2 * g81x2, {x, 0, max}], x]

Formula

a(n) ~ 2 * A339986 * A051491^n / n^(3/2).

A050395 Reversion of rooted trees A000081.

Original entry on oeis.org

1, -1, 0, 1, -1, 1, -4, 11, -18, 18, 0, -60, 189, -360, 453, -373, 294, -652, 1443, -841, -6127, 27681, -75150, 172371, -389662, 867415, -1630604, 1826409, 1738343, -15855044, 49812000, -109702703, 186277940, -229343877, 86783346, 618570769, -2635628596
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{t}, t[1] = 1; t[k_] := t[k] = Sum[DivisorSum[k - m, t[#] # &] t[m]/(k-1), {m, k-1}]; InverseSeries[Sum[t[n] x^n, {n, 1, 40}] + O[x]^41][[3]]] (* Vladimir Reshetnikov, Nov 03 2015 *)

A050396 Exponential reversion of rooted trees A000081.

Original entry on oeis.org

1, -1, 1, 1, -14, 64, -97, -1376, 15915, -68820, -467868, 11504693, -85105325, -490922106, 21504158897, -242026388646, -848338391966, 80509815160192, -1351044945506956, 1506218518200935, 472249651021870475, -11783220545826576339, 78093421491085905492
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Crossrefs

Cf. A050395.

Programs

  • Mathematica
    a[n:0|1] := n; a[n_] := a[n] = Sum[m a[m] a[n-k*m], {m, n-1}, {k, (n-1)/m}]/(n-1); length = 20; Range[length]! InverseSeries[Sum[a[n] x^n/n!, {n, 0, length}] + O[x]^(length+1)][[3]] (* Vladimir Reshetnikov, Nov 06 2015 *)

A051492 Continued fraction for Otter's rooted tree constant: lim_{n->inf} A000081(n+1)/A000081(n).

Original entry on oeis.org

2, 1, 21, 1, 1, 1, 1, 5, 2, 1, 1, 2, 1, 13, 1, 3, 17, 1, 1, 6, 2, 1796, 1, 1, 2, 110, 41, 2, 3, 1, 7, 43, 11, 7, 15, 3, 3, 3, 2, 4, 1, 4, 2, 1, 35, 1, 1, 1, 2, 6, 1, 1, 1, 1, 4, 3, 2, 1, 17, 7, 1, 5, 2, 7, 1, 8, 3, 12, 1, 6, 2, 1, 1, 5, 2, 4, 3, 1, 17, 7, 30, 3, 1, 4, 1
Offset: 0

Views

Author

Keywords

Examples

			2.95576528565199497...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.

Crossrefs

Cf. A000081, A051491 (decimal expansion).

Extensions

Offset changed by Andrew Howroyd, Jul 04 2024

A144963 Eigentriangle, row sums = A000081 starting (1, 2, 4, 9, 20, 48, 115, ...).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 4, 3, 2, 2, 4, 9, 8, 3, 4, 4, 9, 20, 16, 8, 6, 8, 9, 20, 48, 41, 16, 16, 12, 18, 20, 48, 115, 98, 41, 32, 32, 27, 40, 115, 286, 250, 98, 82, 64, 72, 60, 96, 115, 286, 719
Offset: 1

Views

Author

Gary W. Adamson, Sep 27 2008

Keywords

Comments

Row sums = A000081 starting with offset 2: (1, 2, 4, 9, 20, 48, 115, ...).
Right border = (1, 1, 2, 4, 9, 20, 48, ...).
Left border = A051573: (1, 1, 1, 2, 3, 8, 16, 41, ...).
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle:
   1;
   1,  1;
   1,  1,  2;
   2,  1,  2,  4;
   3,  2,  2,  4,  9;
   8,  3,  4,  4,  9, 20;
  16,  8,  6,  8,  9, 20, 48;
  41, 16, 16, 12, 18, 20, 48, 115;
  98, 41, 32, 32, 27, 40, 48, 115, 286;
  ...
Row 4 = (2, 1, 2, 4) = termwise products of (2, 1, 1, 1) and (1, 1, 2, 4).
		

Formula

Eigentriangle by rows, termwise products of A000081 starting with offset 2: (1, 2, 4, 9, 20, 48, ...) and row terms of an A051573 decrescendo triangle: (1; 1,1; 1,1,1; 2,1,1,1; 3,2,1,1,1; ...) where A051573 = (1, 1, 1, 2, 3, 8, 16, 41, ...).

A185667 Primes in A000081.

Original entry on oeis.org

2, 719, 87811
Offset: 1

Views

Author

Jonathan Vos Post, Feb 08 2011

Keywords

Comments

A000081(n) is prime for n in A051420.
a(4) = A000081(343) has 158 digits and is too large to be displayed here.

Crossrefs

Formula

A000040 INTERSECTION A000081.
a(n) = A000081(A051420(n)). - Amiram Eldar, Nov 11 2017
Previous Showing 11-20 of 693 results. Next