A065066
Triangle T(n,k) read by rows of partially ordered sets ("posets") with n unlabeled nodes and k maximal elements (0 <= k <= n).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 7, 3, 1, 0, 16, 27, 15, 4, 1, 0, 63, 134, 88, 27, 5, 1, 0, 318, 814, 642, 221, 43, 6, 1, 0, 2045, 6258, 5828, 2319, 477, 64, 7, 1, 0, 16999, 60877, 66612, 30698, 7015, 931, 90, 8, 1, 0, 183231, 755323, 959941, 514525, 133610
Offset: 0
1,
0,1,
0,1,1,
0,2,2,1,
0,5,7,3,1,
0,16,27,15,4,1,
0,63,134,88,27,5,1,
0,318,814,642,221,43,6,1,
...
- R. J. Mathar, Table of n, a(n) for n = 0..90
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points, Tables 8, 10, 16, 20, 24, 28, 32, 36, 40...
- FindStat - Combinatorial Statistic Finder, The number of minimal elements in a poset., The number of maximal elements of a poset.
- Index entries for sequences related to posets
A124482
Number of indecomposable disconnected hook length posets with n elements.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 4, 5, 31
Offset: 1
A124775
Number of unlabeled partially ordered sets associated with compositions in standard order.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 3, 1, 2, 1, 1
Offset: 0
Composition number 11 is 2,1,1; there are 3 partial orders associated with this (shown below), so a(11) = 3.
..O..*O..*..O
..|..*|..*./|
..O..*O..*O.|
./.\.*|..*|.|
O...O*O.O*O.O
The table starts:
1
1
1 1
1 2 1 1
A301871
Number of N- and bowtie-free posets with n elements.
Original entry on oeis.org
1, 2, 5, 14, 40, 121, 373, 1184, 3823, 12554, 41733, 140301, 475934, 1627440, 5602983, 19406703, 67574371, 236409625, 830582851, 2929246932, 10366380583, 36801225872, 131021870786, 467701875135, 1673584553886, 6002046468815, 21570135722058, 77668429499325, 280167079428684, 1012323004985313
Offset: 1
- Stephan Wagner, Table of n, a(n) for n = 1..100
- T. Hasebe and S. Tsujie, Order quasisymmetric functions distinguish rooted trees, arXiv:1610.03908 [math.CO], 2016-2017.
- T. Hasebe and S. Tsujie, Order quasisymmetric functions distinguish rooted trees, Journal of Algebraic Combinatorics 46 (2017), 499-515.
- V. Razanajatovo Misanantenaina and S. Wagner, A Tutte-like polynomial for rooted trees and specific posets, arXiv:1803.09623 [math.CO], 2018.
-
V=1;Do[V = Normal[Series[(1 - x) Exp[Sum[(2 x^m - x^(2 m)) (V /. x -> x^m)/m, {m, 1, n}]], {x, 0, n}]], {n, 1, 20}]; Table[Coefficient[V,x,n],{n, 1, 20}]
A327016
BII-numbers of finite T_0 topologies without their empty set.
Original entry on oeis.org
0, 1, 2, 5, 6, 7, 8, 17, 24, 25, 34, 40, 42, 69, 70, 71, 81, 85, 87, 88, 89, 93, 98, 102, 103, 104, 106, 110, 120, 121, 122, 127, 128, 257, 384, 385, 514, 640, 642, 1029, 1030, 1031, 1281, 1285, 1287, 1408, 1409, 1413, 1538, 1542, 1543, 1664, 1666, 1670, 1920
Offset: 1
The sequence of all finite T_0 topologies without their empty set together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
71: {{1},{2},{1,2},{1,2,3}}
81: {{1},{1,3},{1,2,3}}
85: {{1},{1,2},{1,3},{1,2,3}}
87: {{1},{2},{1,2},{1,3},{1,2,3}}
88: {{3},{1,3},{1,2,3}}
BII-numbers of topologies without their empty set are
A326876.
BII-numbers of T_0 set-systems are
A326947.
Cf.
A001930,
A048793,
A306445,
A316978,
A319564,
A326031,
A326872,
A326875,
A326939,
A326941,
A326959.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,1000],UnsameQ@@dual[bpe/@bpe[#]]&&SubsetQ[bpe/@bpe[#],Union[Union@@@Tuples[bpe/@bpe[#],2],DeleteCases[Intersection@@@Tuples[bpe/@bpe[#],2],{}]]]&]
A046907
Number of isomorphism classes of irreducible posets with n labeled points.
Original entry on oeis.org
1, 1, 1, 2, 7, 31, 184, 1351, 12524, 146468, 2177570, 41374407, 1008220289, 31559446774, 1269310589336, 65562045668340, 4345161435996517
Offset: 0
- G. Brinkmann, B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179 (Table 1).
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Index entries for sequences related to posets
A066304
Reduced partially ordered sets (posets) with n unlabeled elements.
Original entry on oeis.org
1, 1, 1, 3, 8, 30, 150
Offset: 0
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 57 (1.4.70).
A091070
Number of automorphism groups of partial orders on n points.
Original entry on oeis.org
1, 1, 2, 3, 6, 8, 16, 21, 41, 57, 103, 140, 276
Offset: 0
Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(3)=3 because of the 5 partial orders on 3 points, 2 have trivial automorphism group, 2 have an automorphism of order 2 and one has the full symmetric group as its automorphism group; thus 3 different (conjugacy classes of) subgroups occur.
Cf.
A000638 (subgroups of the symmetric group),
A000112 (partial orders).
A124016
Number of connected d-complete posets with n elements.
Original entry on oeis.org
1, 1, 2, 5, 11, 28, 69, 181, 474
Offset: 1
A173311
a(n) is the number of regular D classes in the semigroup of all binary relations on [n].
Original entry on oeis.org
1, 2, 4, 9, 25, 88, 406, 2451, 19450, 202681, 2769965, 49519392, 1154411138, 34978238590, 1373171398361, 69648249299517, 4552778914494604
Offset: 0
Comments