cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 109 results. Next

A162588 G.f.: A(x) = exp( 2*Sum_{n>=1} 2^n/A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 4, 10, 24, 52, 112, 240, 512, 1060, 2192, 4552, 9440, 19408, 39872, 81984, 168448, 342632, 696736, 1421200, 2897856, 5891872, 11976064, 24361856, 49543168, 100329952, 203147136, 411939264, 835168512, 1690383744, 3420860928
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2009

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 10*x^2 + 24*x^3 + 52*x^4 + 112*x^5 + 240*x^6 + ...
log(A(x))/2 = 2*x + 2*x^2/2 + 8*x^3/3 + 4*x^4/4 + 32*x^5/5 + 32*x^6/6 + 128*x^7/7 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 150; a[n_]:= SeriesCoefficient[Series[Exp[Sum[2^(k + 1 - IntegerExponent[k, 2])*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], n]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=2*sum(m=1,n,2^(m-valuation(m,2))*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

A178855 Partial sums of A033485.

Original entry on oeis.org

1, 3, 6, 11, 18, 28, 41, 59, 82, 112, 149, 196, 253, 323, 406, 507, 626, 768, 933, 1128, 1353, 1615, 1914, 2260, 2653, 3103, 3610, 4187, 4834, 5564, 6377, 7291, 8306, 9440, 10693, 12088, 13625, 15327, 17194, 19256, 21513, 23995, 26702, 29671, 32902, 36432
Offset: 1

Views

Author

Philippe Deléham, Jun 19 2010

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          `if`(n<2, n, b(n-1)+b(iquo(n, 2)))
        end:
    a:= n-> (b(2*n+1)-1)/2:
    seq(a(n), n=1..60);  # Alois P. Heinz, Feb 17 2022
  • Python
    from itertools import islice
    from collections import deque
    def A178855_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        while True:
            a += b
            aqueue.append(a)
            if f:
                yield (a-1)//2
                b = aqueue.popleft()
            f = not f
    A178885_list = list(islice(A178855_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n) = (A033485(2n+1)-1)/2.

Extensions

a(40) corrected by Georg Fischer, Aug 28 2020

A307148 Number of binary partitions of n in which exactly one of the powers of 2 is used an odd number of times.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 2, 5, 4, 7, 4, 10, 6, 12, 6, 17, 10, 21, 10, 28, 14, 32, 14, 42, 20, 48, 20, 60, 26, 66, 26, 83, 36, 93, 36, 114, 46, 124, 46, 152, 60, 166, 60, 198, 74, 212, 74, 254, 94, 274, 94, 322, 114, 342, 114, 402, 140, 428, 140, 494, 166, 520
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2019

Keywords

Comments

If someone extends this, the analogs L(m, n) = numbers of binary partitions of n in which exactly m of the powers of 2 are used an odd number of times for m>2 could also be added (A307149 is the case m=2).

Crossrefs

Programs

  • Mathematica
    Clear[L]; L[m_, n_] := L[m, n] = If[n == 0, If[m == 0, 1, 0], If[EvenQ[n] && n >= 2, L[m, n - 2] + L[m, n/2], If[m >= 1, L[m - 1, n - 1], 0]]]; Table[L[1, n], {n, 0, 100}] (* Vaclav Kotesovec, Mar 29 2019 *)

Extensions

More terms from Vaclav Kotesovec, Mar 29 2019

A307149 Number of binary partitions of n in which exactly two of the powers of 2 are used an odd number of times.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 3, 1, 5, 3, 7, 4, 10, 7, 12, 8, 17, 13, 21, 16, 28, 23, 32, 27, 42, 37, 48, 44, 60, 56, 66, 64, 83, 81, 93, 94, 114, 115, 124, 131, 152, 159, 166, 182, 198, 214, 212, 241, 254, 283, 274, 320, 322, 368, 342, 412, 402, 472, 428, 528, 494
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Clear[L]; L[m_, n_] := L[m, n] = If[n == 0, If[m == 0, 1, 0], If[EvenQ[n] && n >= 2, L[m, n - 2] + L[m, n/2], If[m >= 1, L[m - 1, n - 1], 0]]]; Table[L[2, n], {n, 0, 100}] (* Vaclav Kotesovec, Mar 29 2019 *)

Extensions

More terms from Vaclav Kotesovec, Mar 29 2019

A322003 Indices where A028897(A322000(n)) increases. Partial sums of A072170(n,10).

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 59, 72, 90, 108, 130, 152, 182, 212, 248, 284, 329, 374, 426, 478, 542, 606, 678, 750, 834, 918, 1011, 1104, 1214, 1324, 1446, 1568, 1708, 1848, 2002, 2156, 2333, 2510, 2702, 2894, 3108, 3322, 3552, 3782, 4040, 4298, 4575, 4852, 5156, 5460, 5784, 6108, 6464, 6820, 7196, 7572, 7977, 8382
Offset: 0

Views

Author

M. F. Hasler, Feb 19 2019

Keywords

Comments

A322000 lists all nonnegative integers m ordered by increasing "decibinary" value N = A028897(m) = Sum d[i]*2^i where d[i] are the decimal digits of m. A072170(N,10) says in how many ways a given N can be written in that way. Accordingly, this is also the length of runs of identical values A028897(A322000(k)), and the partial sums, listed here as a(k), give the indices of A322000 where the decibinary value of the terms go up by one.
We have a(k) <= A000123(k-1) with equality for 1 <= k <= 10: the first differences of A000123 give back that sequence with terms duplicated, and this is the limiting column of A072170.

Crossrefs

Programs

  • PARI
    A322003(n)=sum(k=0,n-1,A072170(k,10))
    A322003_vec=vector(99,k,s=if(k>1,s)+A072170(k-1,10)) \\ more efficient for computing a large vector. Excludes the initial a(0) = 0 to have 1-based indices of the vector match the indices of the components a(n), n >= 1.

Formula

a(n) = Sum_{0 <= k < n} A072170(k,10).

A323775 a(n) = Sum_{k = 1...n} k^(2^(n - k)).

Original entry on oeis.org

1, 3, 8, 30, 359, 72385, 4338080222, 18448597098193762732, 340282370354622283774333836315916425069, 115792089237316207213755562747271079374483128445080168204415615259394085515423
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Number of ways to choose a constant integer partition of each part of a constant integer partition of 2^(n - 1).

Examples

			The a(1) = 1 through a(4) = 30 twice-partitions:
  (1)  (2)     (4)           (8)
       (11)    (22)          (44)
       (1)(1)  (1111)        (2222)
               (2)(2)        (4)(4)
               (11)(2)       (22)(4)
               (2)(11)       (4)(22)
               (11)(11)      (22)(22)
               (1)(1)(1)(1)  (1111)(4)
                             (4)(1111)
                             (11111111)
                             (1111)(22)
                             (22)(1111)
                             (1111)(1111)
                             (2)(2)(2)(2)
                             (11)(2)(2)(2)
                             (2)(11)(2)(2)
                             (2)(2)(11)(2)
                             (2)(2)(2)(11)
                             (11)(11)(2)(2)
                             (11)(2)(11)(2)
                             (11)(2)(2)(11)
                             (2)(11)(11)(2)
                             (2)(11)(2)(11)
                             (2)(2)(11)(11)
                             (11)(11)(11)(2)
                             (11)(11)(2)(11)
                             (11)(2)(11)(11)
                             (2)(11)(11)(11)
                             (11)(11)(11)(11)
                             (1)(1)(1)(1)(1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^2^(n-k),{k,n}],{n,12}]

A073463 Triangle of number of partitions of 2n into powers of 2 where the largest part is 2^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 0, 1, 4, 4, 1, 0, 1, 5, 6, 2, 0, 0, 1, 6, 9, 4, 0, 0, 0, 1, 7, 12, 6, 0, 0, 0, 0, 1, 8, 16, 10, 1, 0, 0, 0, 0, 1, 9, 20, 14, 2, 0, 0, 0, 0, 0, 1, 10, 25, 20, 4, 0, 0, 0, 0, 0, 0, 1, 11, 30, 26, 6, 0, 0, 0, 0, 0, 0, 0, 1, 12, 36, 35, 10, 0, 0, 0, 0, 0, 0, 0, 0, 1, 13, 42, 44
Offset: 0

Views

Author

Henry Bottomley, Aug 02 2002

Keywords

Comments

In the recurrence T(n,k)=T(n-1,k)+T([n/2],k-1): T(n-1,k) represents the partitions where the smallest part is 1 and T([n/2],k-1) those where it is not.

Examples

			Rows start:
  1;
  1, 1;
  1, 2, 1;
  1, 3, 2, 0;
  1, 4, 4, 1, 0;
  1, 5, 6, 2, 0, 0;
  ...
		

Crossrefs

Columns include A000012, A000027, A002620, A008804. Subsequent columns start like A000123 (offset). Row sums are A000123.

Formula

T(n, k) = T(n-1, k)+T([n/2], k-1) starting with T(n, 0)=1 and T(0, k)=0 for k>0.

A101566 Binary partition sequence matrix.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 1, 4, 4, 2, 2, 1, 1, 6, 4, 4, 2, 2, 1, 1, 6, 6, 4, 4, 2, 2, 1, 1, 10, 6, 6, 4, 4, 2, 2, 1, 1, 10, 10, 6, 6, 4, 4, 2, 2, 1, 1, 14, 10, 10, 6, 6, 4, 4, 2, 2, 1, 1, 14, 14, 10, 10, 6, 6, 4, 4, 2, 2, 1, 1, 20, 14, 14, 10, 10, 6, 6, 4, 4, 2, 2, 1, 1, 20, 20, 14, 14, 10
Offset: 0

Views

Author

Paul Barry, Dec 07 2004

Keywords

Comments

Row sums are A000123.

Crossrefs

Cf. A018819.

Formula

Inverse matrix of T(n, k)=if(k<=n, (-1)^A010060(n-k), 0)

A117115 A sequence related to M-partitions.

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 14, 21, 24, 34, 37, 51, 58, 75, 82, 110, 117, 148, 161, 202, 215, 265, 278, 342, 365, 436, 459, 557, 580, 685, 722, 855, 892, 1046, 1083, 1268, 1325, 1523, 1580, 1839, 1896, 2168, 2251, 2573, 2656, 3017, 3100, 3525, 3644, 4092, 4211, 4766, 4885
Offset: 0

Views

Author

N. J. A. Sloane, Apr 26 2006

Keywords

Crossrefs

Programs

  • Maple
    # To get about 80 terms: B:=mul( (1-x^(2^n))^(-1),n=0..7); D2:=add( x^(2^(j-1)-1)*subs(x=x^(3*2^(j-1)),B)*mul(1/(1-x^(2^i)),i=0..j), j=1..8); series(D2,x,81);

A117117 A sequence related to M-partitions.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 13, 15, 21, 29, 37, 45, 62, 70, 89, 108, 132, 151, 191, 210, 256, 296, 350, 390, 476, 516, 610, 684, 795, 869, 1025, 1099, 1274, 1399, 1593, 1718, 1994, 2119, 2414, 2614, 2949, 3149, 3585, 3785, 4267, 4577, 5099, 5409, 6102, 6412, 7145, 7603, 8422
Offset: 0

Views

Author

N. J. A. Sloane, Apr 26 2006

Keywords

Crossrefs

Programs

  • Maple
    # To get about 80 terms, first define B and D2 as in A117115. E2:=add( x^(2^(j+1)-4)*subs(x=x^(3*2^(j-1)),D2)*mul(1/(1-x^(2^i)),i=0..j), j=1..8); series(E2,x,81);
Previous Showing 81-90 of 109 results. Next