cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A318118 a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^3)).

Original entry on oeis.org

1, 1, 3, 10, 40, 150, 616, 2456, 10102, 41400, 171526, 712111, 2972115, 12434993, 52195414, 219567909, 925704792, 3909841659, 16541598215, 70085877919, 297347922785, 1263046810334, 5370930049915, 22861883482838, 97402827429118, 415332438952517, 1772380322197432
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the Euler transform of n-gonal numbers.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[x^k (1 + (n - 3) x^k)/(k (1 - x^k)^3), {k, 1, n}]], {x, 0, n}], {n, 0, 26}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 4.3505530790182509701639869563721679988879373943131559534408716195123... and c = 0.2276354216252041005336767937139336687746108521151301186102034... - Vaclav Kotesovec, Aug 18 2018

A264923 G.f.: 1 / Product_{n>=0} (1 - x^(n+3))^((n+1)*(n+2)/2!).

Original entry on oeis.org

1, 0, 0, 1, 3, 6, 11, 18, 33, 57, 105, 183, 330, 567, 990, 1693, 2904, 4917, 8343, 14010, 23511, 39171, 65100, 107592, 177352, 290931, 475905, 775381, 1259637, 2039094, 3291613, 5296467, 8499339, 13599292, 21702795, 34541724, 54839894, 86847255, 137212197, 216274466, 340129773, 533726442, 835732774, 1305877914, 2036369010
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2015

Keywords

Comments

Number of partitions of n objects of 3 colors, where each part must contain at least one of each color. [Conjecture - see comment by Franklin T. Adams-Watters in A052847].

Examples

			G.f.: A(x) = 1 + x^3 + 3*x^4 + 6*x^5 + 11*x^6 + 18*x^7 + 33*x^8 + 57*x^9 + 105*x^10 +...
where
1/A(x) = (1-x^3) * (1-x^4)^3 * (1-x^5)^6 * (1-x^6)^10 * (1-x^7)^15 * (1-x^8)^21 * (1-x^9)^28 * (1-x^10)^36 * (1-x^11)^45 *...
Also,
log(A(x)) = (x/(1-x))^3 + (x^2/(1-x^2))^3/2 + (x^3/(1-x^3))^3/3 + (x^4/(1-x^4))^3/4 + (x^5/(1-x^5))^3/5 + (x^6/(1-x^6))^3/6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-2)*(k-1)/2), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)
  • PARI
    {a(n) = my(A=1); A = prod(k=0,n, 1/(1 - x^(k+3) +x*O(x^n) )^((k+1)*(k+2)/2) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, (x^k/(1 - x^k))^3 /k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {L(n) = sumdiv(n,d, d*(d-1)*(d-2)/2! )}
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} ( x^n/(1-x^n) )^3 /n ).
G.f.: exp( Sum_{n>=1} L(n) * x^n/n ), where L(n) = Sum_{d|n} d*(d-1)*(d-2)/2!.
a(n) ~ Pi^(3/8) / (2^(55/32) * 15^(7/32) * n^(23/32)) * exp(29*Zeta(3)/(8*Pi^2) - log(2*Pi)/2 - 3*Zeta'(-1)/2 - 2025*Zeta(3)^3/(2*Pi^8) + (5^(1/4)*Pi/6^(3/4) - 135*15^(1/4)*Zeta(3)^2/(2^(7/4)*Pi^5)) * n^(1/4) - 3*sqrt(15*n/2)*Zeta(3)/Pi^2 + 2^(7/4)*Pi/(3*15^(1/4)) * n^(3/4)). - Vaclav Kotesovec, Dec 09 2015

A278403 a(n) = Sum_{d|n} d^2 * (d+1)/2.

Original entry on oeis.org

1, 7, 19, 47, 76, 151, 197, 335, 424, 632, 727, 1127, 1184, 1673, 1894, 2511, 2602, 3634, 3611, 4872, 5066, 6299, 6349, 8615, 8201, 10316, 10630, 13081, 12616, 16526, 15377, 19407, 19258, 22838, 22322, 28586, 26012, 31775, 31622, 37960, 35302, 44594, 40679, 49899, 48874, 56081, 53017, 67239, 60222, 72507, 70246, 82012, 75844, 94030, 85502, 102745, 97850, 111860, 104431, 131502
Offset: 1

Views

Author

Paul D. Hanna, Nov 20 2016

Keywords

Examples

			L.g.f.: L(x) = x + 7*x^2/2 + 19*x^3/3 + 47*x^4/4 + 76*x^5/5 + 151*x^6/6 + 197*x^7/7 + 335*x^8/8 + 424*x^9/9 + 632*x^10/10 + 727*x^11/11 + 1127*x^12/12 +...
which equals the series
L(x) = x/(1-x)^3 + (x^2/2)/(1-x^2)^3 + (x^3/3)/(1-x^3)^3 + (x^4/4)/(1-x^4)^3 + (x^5/5)/(1-x^5)^3 + (x^6/6)/(1-x^6)^3 + (x^7/7)/(1-x^7)^3 +...
The exponentiation of the l.g.f. equals the infinite product
exp(L(x)) = 1/((1-x)*(1-x^2)^3*(1-x^3)^6*(1-x^4)^10*(1-x^5)^15*(1-x^6)^21*...);
explicitly,
exp(L(x)) = 1 + x + 4*x^2 + 10*x^3 + 26*x^4 + 59*x^5 + 141*x^6 + 310*x^7 + 692*x^8 + 1483*x^9 + 3162*x^10 + 6583*x^11 + 13602*x^12 +...+ A000294(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Total[#^2*(#+1)/2&/@Divisors[n]],{n,60}] (* Harvey P. Dale, Jul 26 2017 *)
  • PARI
    {a(n) = sumdiv(n,d,d^2*(d+1)/2)}
    for(n=1,60,print1(a(n),", "))
    
  • PARI
    {a(n) = (sigma(n,3) + sigma(n,2))/2}
    for(n=1,60,print1(a(n),", "))
    
  • PARI
    {a(n) = n * polcoeff( sum(k=1,n, (x^k/k) / (1 - x^k +x*O(x^n))^3), n)}
    for(n=1,60,print1(a(n),", "))

Formula

Let the l.g.f. be L(x) = Sum_{n>=1} a(n)*x^n/n, then:
(1) exp( L(x) ) = Product_{n>=1} 1/(1 - x^n)^(n*(n+1)/2),
(2) L(x) = Sum_{n>=1} (x^n/n) / (1 - x^n)^3.
O.g.f.: Sum_{n>=1} n^2*(n+1)/2 * x^n / (1 - x^n).
a(n) = (sigma_3(n) + sigma_2(n))/2, where sigma_2(n) = A001157(n) and sigma_3(n) = A001158(n).
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / 720. - Vaclav Kotesovec, Jul 13 2021
Dirichlet g.f.: zeta(s) * (zeta(s-3) + zeta(s-2)) / 2. - Amiram Eldar, Jan 02 2025

A292386 Expansion of Product_{k>=1} (1 - x^k)^(k*(k+1)/2).

Original entry on oeis.org

1, -1, -3, -3, -1, 10, 20, 36, 28, -11, -103, -245, -397, -448, -214, 464, 1817, 3680, 5660, 6473, 4362, -3232, -18428, -41946, -70589, -94890, -96996, -49673, 78907, 317995, 673299, 1105044, 1491333, 1605102, 1094914, -479358, -3561322, -8404118, -14781724, -21595744, -26450603, -25329527
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 15 2017

Keywords

Comments

Convolution inverse of A000294 (Euler transform of the triangular numbers).

Crossrefs

Programs

  • Mathematica
    nmax = 41; CoefficientList[Series[Product[(1 - x^k)^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: -binomial(n+1, 2))
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k>=1} (1 - x^k)^(k*(k+1)/2).

A327066 Expansion of Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))^j).

Original entry on oeis.org

1, 1, 2, 3, 7, 9, 17, 23, 41, 58, 93, 127, 205, 281, 423, 583, 869, 1180, 1716, 2322, 3317, 4479, 6282, 8406, 11696, 15589, 21343, 28325, 38480, 50756, 68307, 89688, 119725, 156586, 207449, 269921, 355530, 460804, 602816, 778281, 1012956, 1302481, 1686418
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[Product[1/(1-x^(k*j))^j, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327067 Expansion of Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))^k).

Original entry on oeis.org

1, 1, 3, 6, 15, 26, 57, 101, 202, 358, 670, 1165, 2113, 3614, 6326, 10691, 18275, 30408, 50969, 83716, 137943, 223883, 363547, 583369, 935524, 1485673, 2355496, 3705275, 5815497, 9066696, 14100325, 21802824, 33622951, 51592978, 78949673, 120278899, 182742752
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[1/(1-x^(k*j))^k, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327068 Expansion of Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))^(k*j)).

Original entry on oeis.org

1, 1, 3, 6, 17, 28, 66, 116, 248, 441, 867, 1516, 2894, 5015, 9138, 15724, 27954, 47428, 82421, 138380, 235910, 392040, 657590, 1081225, 1789550, 2914500, 4763562, 7689071, 12433581, 19897139, 31862226, 50583981, 80285138, 126509709, 199167763, 311620226
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[1/(1-x^(k*j))^(k*j), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A278767 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(2*k-1)).

Original entry on oeis.org

1, 1, 7, 22, 71, 206, 616, 1712, 4743, 12677, 33407, 86085, 218677, 546060, 1345840, 3271893, 7861239, 18670881, 43883904, 102112483, 235401947, 537869136, 1218743007, 2739566083, 6111766043, 13536683750, 29775945929, 65065819486, 141285315728, 304935221675, 654318376244, 1396166024244, 2963068779402
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Comments

Euler transform of the hexagonal numbers (A000384).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d^2*(2*d-1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 02 2016
  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(2*k-1)).
a(n) ~ exp(-Zeta'(-1) - Zeta(3)/(2*Pi^2) - 75*Zeta(3)^3/(4*Pi^8) - 15^(5/4)*Zeta(3)^2/(2^(9/4)*Pi^5) * n^(1/4) - sqrt(15/2)*Zeta(3)/Pi^2 * sqrt(n) + 2^(9/4)*Pi/(3^(5/4)*5^(1/4)) * n^(3/4)) / (2^(67/48) * 15^(5/48) * Pi^(1/12) * n^(29/48)). - Vaclav Kotesovec, Dec 02 2016

A278769 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).

Original entry on oeis.org

1, 1, 8, 26, 88, 269, 843, 2456, 7115, 19892, 54756, 147355, 390517, 1017091, 2612670, 6617641, 16556913, 40933339, 100104289, 242276236, 580718077, 1379161494, 3247074738, 7581837910, 17564867853, 40388447308, 92206496318, 209069338580, 470944571003, 1054178579266, 2345477963043, 5188246121144, 11412352653001
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Comments

Euler transform of the heptagonal numbers (A000566).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d^2*(5*d-3)/2, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 02 2016
  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).
a(n) ~ exp(-3*Zeta'(-1)/2 - 5*Zeta(3)/(8*Pi^2) - 81*Zeta(3)^3/(2*Pi^8) - 3^(13/4)*Zeta(3)^2/(2^(7/4)*Pi^5) * n^(1/4) - 3^(3/2)*Zeta(3)/(sqrt(2)*Pi^2) * sqrt(n) + 2^(7/4)*Pi/3^(5/4) * n^(3/4)) / (2^(51/32) * 3^(3/32) * Pi^(1/8) * n^(19/32)). - Vaclav Kotesovec, Dec 02 2016

A294654 Expansion of Product_{k>=1} 1/((1 - x^(2*k-1))^(k*(5*k-3)/2)*(1 - x^(2*k))^(k*(5*k+3)/2)).

Original entry on oeis.org

1, 1, 5, 12, 35, 81, 208, 475, 1123, 2505, 5617, 12192, 26368, 55797, 117255, 242660, 498126, 1010515, 2033662, 4053214, 8017622, 15729219, 30643069, 59268267, 113898873, 217480476, 412813600, 779042099, 1462188257, 2729852845, 5070966794, 9373909586, 17247473718
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2017

Keywords

Comments

Euler transform of the generalized heptagonal numbers (A085787).

Crossrefs

Programs

  • Mathematica
    nmax = 32; CoefficientList[Series[Product[1/((1 - x^(2 k - 1))^(k (5 k - 3)/2) (1 - x^(2 k))^(k (5 k + 3)/2)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (5 d (d + 1)/8 + (-1)^d (2 d + 1)/16 - 1/16), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A085787(k).
a(n) ~ exp(Pi * (2/3)^(5/4) * n^(3/4) + 5*Zeta(3) * sqrt(3*n) / (2^(3/2) * Pi^2) - (75*3^(1/4) * Zeta(3)^2 / (2^(13/4) * Pi^5) + Pi / (2^(17/4) * 3^(3/4))) * n^(1/4) + 375 * Zeta(3)^3 / (8*Pi^8) - 5*Zeta(3) / (64*Pi^2) + 1/12) * Pi^(1/12) / (A * 2^(11/6) * 3^(7/48) * n^(31/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 07 2017
Previous Showing 21-30 of 45 results. Next