A319121
Number of complete multimin tree-factorizations of Heinz numbers of integer partitions of n.
Original entry on oeis.org
1, 2, 5, 18, 74, 344, 1679, 8548, 44690, 238691, 1295990, 7132509
Offset: 1
The a(3) = 5 trees are: 5, (2*3), (2*2*2), (2*(2*2)), ((2*2)*2).
The a(4) = 18 trees (normalized with prime(n) -> n):
4,
(13), (22), (112), (1111),
(1(12)), ((12)1), ((11)2),
(11(11)), (1(11)1), ((11)11), (1(111)), ((111)1), ((11)(11)),
(1(1(11))), (1((11)1)), ((1(11))1), (((11)1)1).
Cf.
A000311,
A001003,
A001055,
A020639,
A255397,
A281113,
A281118,
A281119,
A295281,
A317545,
A317546,
A318577,
A319118,
A319119.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
Table[Sum[Length[Select[mmftrees[k],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{k,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,10}]
A330785
Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
Offset: 1
Triangle begins:
1
0 1
0 1 1
0 1 3 2
0 1 5 8 4
0 1 9 25 28 11
0 1 13 57 111 99 33
0 1 20 129 379 561 408 116
Row n = 5 counts the following chains (minimum and maximum not shown):
() (14) (113)->(14) (1112)->(113)->(14)
(23) (113)->(23) (1112)->(113)->(23)
(113) (122)->(14) (1112)->(122)->(14)
(122) (122)->(23) (1112)->(122)->(23)
(1112) (1112)->(14)
(1112)->(23)
(1112)->(113)
(1112)->(122)
The version for set partitions is
A008826.
The version for factorizations is
A330935.
Cf.
A000111,
A000258,
A000311,
A005121,
A141268,
A196545,
A265947,
A300383,
A306186,
A317141,
A317176,
A318813,
A320160,
A330679.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
upr[q_]:=Union[Sort/@Apply[Plus,mps[q],{2}]];
paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upr[y],y],{y,Sort/@IntegerPartitions[n]}],ConstantArray[1,n],{n}],Length[#]==k-1&]],{n,8},{k,n}]
A364026
Table read by descending antidiagonals. T(n,k) is the big Ramsey degree of k in w^n, where w is the first transfinite ordinal, omega.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 4, 1, 1, 0, 1, 26, 14, 1, 1, 0, 1, 236, 509, 49, 1, 1, 0, 1, 2752, 35839, 10340, 175, 1, 1, 0, 1, 39208, 4154652, 5941404, 222244, 637, 1, 1, 0, 1, 660032, 718142257, 7244337796, 1081112575, 4981531, 2353, 1, 1, 0, 1, 12818912, 173201493539
Offset: 0
The data is organized in a table beginning with row n = 0 and column k = 0. The data is read by descending antidiagonals. T(2,3)=26.
The table T(n,k) begins:
[n/k] 0 1 2 3 4 5 ...
--------------------------------------------------------------------
[0] 1, 1, 0, 0, 0, 0, ...
[1] 1, 1, 1, 1, 1, 1, ...
[2] 1, 1, 4, 26, 236, 2572, ...
[3] 1, 1, 14, 509, 35839, 4154652, ...
[4] 1, 1, 49, 10340, ...
[5] 1, 1, 175, 222244, ...
[6] 1, 1, 637, ...
- Dragan Mašulovic and Branislav Šobot, Countable ordinals and big Ramsey degrees, Combinatorica, 41 (2021), 425-446.
- Alexander S. Kechris, Vladimir G. Pestov, and Stevo Todorčević, Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups, Geometric & Functional Analysis, 15 (2005), 106-189.
-
pp p n k
| n == 0 && k >= 2 = 0
| k == 0 && p == 0 = 1
| k == 0 && p >= 1 = 0
| n == 0 && k == 1 && p == 0 = 1
| n == 0 && k == 1 && p >= 1 = 0
| n == 1 && k >= 1 && k == p = 1
| n == 1 && k >= 1 && k /= p = 0
| n >= 2 && k >= 1 = sum [binom (p-1) i * pp i (n-1) j * pp (p-1-i) n (k-j) | i <- [0..p-1], j <- [1..k]]
binom n 0 = 1
binom 0 k = 0
binom n k = binom (n-1) (k-1) * n `div` k
a364026 n k =
sum [pp p n k | p <- [0..n*k]]
A060694
A triangle related to rooted trees.
Original entry on oeis.org
1, 2, 1, 10, 8, 2, 82, 86, 36, 6, 938, 1202, 668, 192, 24, 13778, 20772, 14118, 5452, 1200, 120, 247210, 427828, 341122, 161688, 48312, 8640, 720, 5240338, 10228458, 9325398, 5184902, 1909920, 467784, 70560, 5040, 128149802, 278346286
Offset: 1
{1}, {2,1}, {10,8,2}, {82,86,36,6}, {938,1202,668,192,24}
A207326
E.g.f. satisfies 2*A(x)-exp(A(x))+1=sin(x).
Original entry on oeis.org
1, 1, 3, 22, 197, 2248, 31311, 514592, 9750137, 209265504, 5018169035, 132971582976, 3858414981085, 121679533902592, 4143895711622327, 151566138479037952, 5925617619735873969
Offset: 1
-
Rest[CoefficientList[Series[(-1 - 2*LambertW[-E^((Sin[x]-1)/2)/2] + Sin[x])/2,{x,0,20}],x] * Range[0,20]!] (* Vaclav Kotesovec, Aug 04 2014 *)
Comments