cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-105 of 105 results.

A319121 Number of complete multimin tree-factorizations of Heinz numbers of integer partitions of n.

Original entry on oeis.org

1, 2, 5, 18, 74, 344, 1679, 8548, 44690, 238691, 1295990, 7132509
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of at least two multimin tree-factorizations, one of each factor in a multimin factorization of n. A multimin tree-factorization is complete if the leaves are all prime numbers.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(3) = 5 trees are: 5, (2*3), (2*2*2), (2*(2*2)), ((2*2)*2).
The a(4) = 18 trees (normalized with prime(n) -> n):
  4,
  (13), (22), (112), (1111),
  (1(12)), ((12)1), ((11)2),
  (11(11)), (1(11)1), ((11)11), (1(111)), ((111)1), ((11)(11)),
  (1(1(11))), (1((11)1)), ((1(11))1), (((11)1)1).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Sum[Length[Select[mmftrees[k],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{k,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,10}]

Extensions

a(11)-a(12) from Robert Price, Sep 14 2018

A330785 Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2020

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   1   3   2
   0   1   5   8   4
   0   1   9  25  28  11
   0   1  13  57 111  99  33
   0   1  20 129 379 561 408 116
Row n = 5 counts the following chains (minimum and maximum not shown):
  ()  (14)    (113)->(14)    (1112)->(113)->(14)
      (23)    (113)->(23)    (1112)->(113)->(23)
      (113)   (122)->(14)    (1112)->(122)->(14)
      (122)   (122)->(23)    (1112)->(122)->(23)
      (1112)  (1112)->(14)
              (1112)->(23)
              (1112)->(113)
              (1112)->(122)
		

Crossrefs

Row sums are A213427.
Main diagonal is A002846.
Column k=3 is A007042.
Dominated by A330784.
The version for set partitions is A008826.
The version for factorizations is A330935.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    upr[q_]:=Union[Sort/@Apply[Plus,mps[q],{2}]];
    paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
    Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upr[y],y],{y,Sort/@IntegerPartitions[n]}],ConstantArray[1,n],{n}],Length[#]==k-1&]],{n,8},{k,n}]

Formula

T(n,k) = A330935(2^n,k).

A364026 Table read by descending antidiagonals. T(n,k) is the big Ramsey degree of k in w^n, where w is the first transfinite ordinal, omega.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 4, 1, 1, 0, 1, 26, 14, 1, 1, 0, 1, 236, 509, 49, 1, 1, 0, 1, 2752, 35839, 10340, 175, 1, 1, 0, 1, 39208, 4154652, 5941404, 222244, 637, 1, 1, 0, 1, 660032, 718142257, 7244337796, 1081112575, 4981531, 2353, 1, 1, 0, 1, 12818912, 173201493539
Offset: 0

Views

Author

Nathan Hurtig, Jul 01 2023

Keywords

Comments

T(n,k) is the least integer t such that, for all finite colorings of the k-subsets of w^n, there exists some S, an order-equivalent subset to w^n, where that coloring restricted to the k-subsets of S outputs at most t colors.
By Ramsey's theorem, the first row T(1,k)=1 for all k.
The second row T(2,k) coincides with A000311.
The second column T(n,2) coincides with A079309.

Examples

			The data is organized in a table beginning with row n = 0 and column k = 0. The data is read by descending antidiagonals. T(2,3)=26.
The table T(n,k) begins:
[n/k]   0   1      2        3       4         5   ...
--------------------------------------------------------------------
[0]     1,  1,     0,       0,      0,        0,  ...
[1]     1,  1,     1,       1,      1,        1,  ...
[2]     1,  1,     4,      26,    236,     2572,  ...
[3]     1,  1,    14,     509,  35839,  4154652,  ...
[4]     1,  1,    49,   10340,  ...
[5]     1,  1,   175,  222244,  ...
[6]     1,  1,   637,  ...
		

References

  • Dragan Mašulovic and Branislav Šobot, Countable ordinals and big Ramsey degrees, Combinatorica, 41 (2021), 425-446.
  • Alexander S. Kechris, Vladimir G. Pestov, and Stevo Todorčević, Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups, Geometric & Functional Analysis, 15 (2005), 106-189.

Crossrefs

T(2,k) is A000311. T(n,2) is A079309.

Programs

  • Haskell
    pp p n k
      | n == 0 && k >= 2 = 0
      | k == 0 && p == 0 = 1
      | k == 0 && p >= 1 = 0
      | n == 0 && k == 1 && p == 0 = 1
      | n == 0 && k == 1 && p >= 1 = 0
      | n == 1 && k >= 1 && k == p = 1
      | n == 1 && k >= 1 && k /= p = 0
      | n >= 2 && k >= 1 = sum [binom (p-1) i * pp i (n-1) j * pp (p-1-i) n (k-j) | i <- [0..p-1], j <- [1..k]]
    binom n 0 = 1
    binom 0 k = 0
    binom n k = binom (n-1) (k-1) * n `div` k
    a364026 n k =
      sum [pp p n k | p <- [0..n*k]]

Formula

T(n,k) = Sum_{p=0..n*k} P(p,n,k), where for n >= 2 and k >= 1,
P(0,n,k) = 0, and for p >= 1,
P(p,n,k) = Sum_{j=1..k} Sum_{0..p-1} binomial(p-1,i)*P(i,n-1,j)*P(p-1-i,n,k-j).

A060694 A triangle related to rooted trees.

Original entry on oeis.org

1, 2, 1, 10, 8, 2, 82, 86, 36, 6, 938, 1202, 668, 192, 24, 13778, 20772, 14118, 5452, 1200, 120, 247210, 427828, 341122, 161688, 48312, 8640, 720, 5240338, 10228458, 9325398, 5184902, 1909920, 467784, 70560, 5040, 128149802, 278346286
Offset: 1

Views

Author

F. Chapoton, Apr 20 2001

Keywords

Comments

The rows sum to A006963, the alternating sum is A000311, the right column is A000142, the left column is related to A032188 (twice); the second-to-right column is A052582

Examples

			{1}, {2,1}, {10,8,2}, {82,86,36,6}, {938,1202,668,192,24}
		

Crossrefs

Formula

E.g.f. given by the Maple expression RootOf(-exp(_Z*x*t)+x*t*exp(_Z*x*t)+y*t*exp(-_Z+_Z*x*t)-y*t^2*x*exp(-_Z+_Z*x*t)+1-t+t*exp(-_Z+_Z*x*t)-x*t*exp(-_Z+_Z*x*t));

Extensions

More terms from Vladeta Jovovic, Apr 21 2001

A207326 E.g.f. satisfies 2*A(x)-exp(A(x))+1=sin(x).

Original entry on oeis.org

1, 1, 3, 22, 197, 2248, 31311, 514592, 9750137, 209265504, 5018169035, 132971582976, 3858414981085, 121679533902592, 4143895711622327, 151566138479037952, 5925617619735873969
Offset: 1

Views

Author

Vladimir Kruchinin, Feb 17 2012

Keywords

Programs

  • Mathematica
    Rest[CoefficientList[Series[(-1 - 2*LambertW[-E^((Sin[x]-1)/2)/2] + Sin[x])/2,{x,0,20}],x] * Range[0,20]!] (* Vaclav Kotesovec, Aug 04 2014 *)

Formula

a(n)=sum((m=0..(n-1)/2, v(n-2*m)*sum(i=0..(n-2*m)/2, (2*i+2*m-n)^n*binomial(n-2*m,i)*(-1)^(n+m-i)))/(2^(n-2*m-1)*(n-2*m)!)), v(n)=A000311(n).
a(n) ~ ((1-log(2))*log(2))^(1/4) * n^(n-1) / ((arcsin(2*log(2)-1))^(n-1/2) * exp(n)). - Vaclav Kotesovec, Aug 04 2014
Previous Showing 101-105 of 105 results.