cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 79 results. Next

A029890 Number of odd graphical partitions.

Original entry on oeis.org

1, 2, 7, 20, 70, 234, 832, 2956, 10759, 39394, 145892, 543564, 2038831, 7684116, 29092055, 110550260, 421495147, 1611662256
Offset: 1

Views

Author

TORSTEN.SILLKE(AT)LHSYSTEMS.COM

Keywords

References

  • R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

Formula

Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.

A029891 Number of even graphical partitions.

Original entry on oeis.org

1, 3, 7, 23, 70, 242, 832, 2983, 10759, 39482, 145892, 543877, 2038831, 7685211, 29092055, 110554267, 421495147, 1611676767
Offset: 1

Views

Author

TORSTEN.SILLKE(AT)LHSYSTEMS.COM

Keywords

References

  • R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

Formula

Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.

A174439 Partial sums of A001523.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 58, 105, 184, 314, 523, 853, 1365, 2149, 3332, 5097, 7701, 11505, 17009, 24907, 36147, 52027, 74304, 105352, 148355, 207575, 288673, 399157, 548926, 750996, 1022400, 1385374, 1868813, 2510181, 3357862, 4474187, 5939186
Offset: 0

Views

Author

Jonathan Vos Post, Mar 19 2010

Keywords

Comments

The subsequence of primes begins: 2, 31, 523, 853, 24907, 52027, 1868813, ...

Crossrefs

Programs

  • Mathematica
    nmax = 41; A001523 = CoefficientList[Series[1 + Sum[(-1)^(k + 1)*x^(k*(k + 1)/2), {k, 1, nmax}] / QPochhammer[x]^2, {x, 0, nmax}], x]; s = 0; Table[s = s + A001523[[k]], {k, 1, nmax}] (* Vaclav Kotesovec, Dec 13 2015 *)

Formula

a(n) = Sum_{i=0..n} A001523(i).
a(n) ~ exp(2*Pi*sqrt(n/3))/(8*Pi*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Dec 13 2015

A322011 Number of distinct chromatic symmetric functions of spanning hypergraphs (or antichain covers) on n vertices.

Original entry on oeis.org

1, 2, 5, 19, 121
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is the augmented monomial symmetric function basis (see A321895).

Examples

			The a(3) = 5 chromatic symmetric functions:
                  m(111)
          m(21) + m(111)
         2m(21) + m(111)
         3m(21) + m(111)
  m(3) + 3m(21) + m(111)
		

Crossrefs

Programs

  • Mathematica
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    hyps[n_]:=Select[stableSets[Rest[Subsets[Range[n]]],SubsetQ],Union@@#==Range[n]&];
    Table[Length[Union[chromSF/@hyps[n]]],{n,5}]

A322063 Number of ways to choose a stable partition of an antichain of sets spanning n vertices.

Original entry on oeis.org

1, 1, 3, 25, 773, 160105
Offset: 0

Views

Author

Gus Wiseman, Nov 25 2018

Keywords

Comments

A stable partition of a hypergraph or set system is a set partition of the vertices where no non-singleton edge has all its vertices in the same block.

Examples

			The a(3) = 25 stable partitions of antichains on 3 vertices. The antichain is on top, and below is a list of all its stable partitions.
  {1}{2}{3}      {1,2,3}        {1}{2,3}       {1,3}{2}       {1,2}{3}
  --------       --------       --------       --------       --------
  {{1,2,3}}      {{1},{2,3}}    {{1,2},{3}}    {{1},{2,3}}    {{1},{2,3}}
  {{1},{2,3}}    {{1,2},{3}}    {{1,3},{2}}    {{1,2},{3}}    {{1,3},{2}}
  {{1,2},{3}}    {{1,3},{2}}    {{1},{2},{3}}  {{1},{2},{3}}  {{1},{2},{3}}
  {{1,3},{2}}    {{1},{2},{3}}
  {{1},{2},{3}}
.
  {1,3}{2,3}     {1,2}{2,3}     {1,2}{1,3}     {1,2}{1,3}{2,3}
  --------       --------       --------       --------
  {{1,2},{3}}    {{1,3},{2}}    {{1},{2,3}}    {{1},{2},{3}}
  {{1},{2},{3}}  {{1},{2},{3}}  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Sum[Length[stableSets[Complement[Subsets[Range[n]],Union@@Subsets/@stn],SubsetQ]],{stn,sps[Range[n]]}],{n,5}]

A029893 Number of graphical partitions with up to n parts (?).

Original entry on oeis.org

1, 2, 4, 10, 24, 68, 198, 656, 2112
Offset: 1

Views

Author

torsten.sillke(AT)lhsystems.com

Keywords

References

  • R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

A possible duplicate of A028506.

Formula

Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.

A069831 Number of graphical partitions of simple Eulerian graphs (partitions given by the degrees of vertices of simple (no loops or multiple edges) graphs having only vertices of even degrees) having n edges.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 3, 3, 5, 8, 10, 13, 16, 22, 29, 36, 45, 61, 74, 95, 118, 152, 183, 232, 279, 354, 422, 524, 627, 780, 926, 1134, 1355, 1651, 1958, 2366, 2809, 3372, 3988, 4757, 5628, 6678, 7874, 9283, 10964, 12861, 15130, 17686, 20799, 24209, 28389
Offset: 0

Views

Author

Roland Bacher, Apr 23 2002

Keywords

Examples

			a(1)=a(2)=0 since Eulerian graphs having 1 or 2 edges are not simple. The triangle is the unique Eulerian graph having 3 edges and no isolated vertices, thus showing a(3)=1.
		

Crossrefs

Cf. A000569.

A321177 Heinz numbers of integer partitions that are the vertex-degrees of some set system with no singletons.

Original entry on oeis.org

1, 4, 8, 12, 16, 18, 24, 27, 32, 36, 40
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Each term paired with its Heinz partition and a realizing set system:
  1:       (): {}
  4:     (11): {{1,2}}
  8:    (111): {{1,2,3}}
  12:   (211): {{1,2},{1,3}}
  16:  (1111): {{1,2,3,4}}
  18:   (221): {{1,2},{1,2,3}}
  24:  (2111): {{1,2},{1,3,4}}
  27:   (222): {{1,2},{1,3},{2,3}}
  32: (11111): {{1,2,3,4,5}}
  36:  (2211): {{1,2},{1,2,3,4}}
  40:  (3111): {{1,2},{1,3},{1,4}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[20],!hyp[nrmptn[#]]=={}&]

A321184 Number of integer partitions of n that are the vertex-degrees of some multiset of nonempty sets, none of which is a proper subset of any other, with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 7, 6, 15, 15, 30
Offset: 0

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Examples

			The a(2) = 1 through a(8) = 15 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
               (211)   (11111)  (222)     (3211)     (332)
               (1111)           (321)     (22111)    (422)
                                (2211)    (31111)    (431)
                                (3111)    (211111)   (2222)
                                (21111)   (1111111)  (3221)
                                (111111)             (3311)
                                                     (4211)
                                                     (22211)
                                                     (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
The a(6) = 7 integer partitions together with a realizing multi-antichain of each (the parts of the partition count the appearances of each vertex in the multi-antichain):
      (33): {{1,2},{1,2},{1,2}}
     (321): {{1,2},{1,2},{1,3}}
    (3111): {{1,2},{1,3},{1,4}}
     (222): {{1,2,3},{1,2,3}}
    (2211): {{1,2,3},{1,2,4}}
   (21111): {{1,2},{1,3,4,5}}
  (111111): {{1,2,3,4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    multanti[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1,stableQ[#]]&];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[n],multanti[#]!={}&]],{n,8}]

A322012 Number of s-positive simple labeled graphs with n vertices.

Original entry on oeis.org

1, 2, 8, 60, 1009
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is the augmented monomial symmetric function basis (see A321895). A graph is s-positive if, in the expansion of its chromatic symmetric function in terms of Schur functions, all coefficients are nonnegative.

Crossrefs

Previous Showing 61-70 of 79 results. Next